| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubcl | Structured version Visualization version GIF version | ||
| Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| lubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
| lubcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lubcl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| Ref | Expression |
|---|---|
| lubcl | ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | lubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 4 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) | |
| 5 | lubcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | lubcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 1, 2, 3, 5, 6 | lubelss 18268 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 7 | lubval 18270 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)))) |
| 9 | 1, 2, 3, 4, 5, 6 | lubeu 18269 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) |
| 10 | riotacl 7329 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) ∈ 𝐵) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) ∈ 𝐵) |
| 12 | 8, 11 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃!wreu 3346 class class class wbr 5095 dom cdm 5621 ‘cfv 6489 ℩crio 7311 Basecbs 17130 lecple 17178 lubclub 18225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-lub 18260 |
| This theorem is referenced by: lubprop 18272 joincl 18292 clatlem 18418 op1cl 39294 |
| Copyright terms: Public domain | W3C validator |