MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubcl Structured version   Visualization version   GIF version

Theorem lubcl 18271
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubcl.b 𝐵 = (Base‘𝐾)
lubcl.u 𝑈 = (lub‘𝐾)
lubcl.k (𝜑𝐾𝑉)
lubcl.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubcl (𝜑 → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem lubcl
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2733 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubcl.u . . 3 𝑈 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubcl.k . . 3 (𝜑𝐾𝑉)
6 lubcl.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
71, 2, 3, 5, 6lubelss 18268 . . 3 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7lubval 18270 . 2 (𝜑 → (𝑈𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
91, 2, 3, 4, 5, 6lubeu 18269 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
10 riotacl 7329 . . 3 (∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
119, 10syl 17 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
128, 11eqeltrd 2833 1 (𝜑 → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  ∃!wreu 3346   class class class wbr 5095  dom cdm 5621  cfv 6489  crio 7311  Basecbs 17130  lecple 17178  lubclub 18225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-lub 18260
This theorem is referenced by:  lubprop  18272  joincl  18292  clatlem  18418  op1cl  39294
  Copyright terms: Public domain W3C validator