MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubelss Structured version   Visualization version   GIF version

Theorem lubelss 18258
Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubs.b 𝐵 = (Base‘𝐾)
lubs.l = (le‘𝐾)
lubs.u 𝑈 = (lub‘𝐾)
lubs.k (𝜑𝐾𝑉)
lubs.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubelss (𝜑𝑆𝐵)

Proof of Theorem lubelss
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubs.s . . 3 (𝜑𝑆 ∈ dom 𝑈)
2 lubs.b . . . 4 𝐵 = (Base‘𝐾)
3 lubs.l . . . 4 = (le‘𝐾)
4 lubs.u . . . 4 𝑈 = (lub‘𝐾)
5 biid 261 . . . 4 ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
6 lubs.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6lubeldm 18257 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))))
81, 7mpbid 232 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
98simpld 494 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3341  wss 3903   class class class wbr 5092  dom cdm 5619  cfv 6482  Basecbs 17120  lecple 17168  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-lub 18250
This theorem is referenced by:  lubcl  18261  lubprop  18262  joinfval  18277  joindmss  18283  lubsscl  48954
  Copyright terms: Public domain W3C validator