MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubelss Structured version   Visualization version   GIF version

Theorem lubelss 17584
Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubs.b 𝐵 = (Base‘𝐾)
lubs.l = (le‘𝐾)
lubs.u 𝑈 = (lub‘𝐾)
lubs.k (𝜑𝐾𝑉)
lubs.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubelss (𝜑𝑆𝐵)

Proof of Theorem lubelss
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubs.s . . 3 (𝜑𝑆 ∈ dom 𝑈)
2 lubs.b . . . 4 𝐵 = (Base‘𝐾)
3 lubs.l . . . 4 = (le‘𝐾)
4 lubs.u . . . 4 𝑈 = (lub‘𝐾)
5 biid 264 . . . 4 ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
6 lubs.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6lubeldm 17583 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))))
81, 7mpbid 235 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
98simpld 498 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  ∃!wreu 3108  wss 3881   class class class wbr 5030  dom cdm 5519  cfv 6324  Basecbs 16475  lecple 16564  lubclub 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-lub 17576
This theorem is referenced by:  lubcl  17587  lubprop  17588  joinfval  17603  joindmss  17609
  Copyright terms: Public domain W3C validator