Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubprop | Structured version Visualization version GIF version |
Description: Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubprop.b | ⊢ 𝐵 = (Base‘𝐾) |
lubprop.l | ⊢ ≤ = (le‘𝐾) |
lubprop.u | ⊢ 𝑈 = (lub‘𝐾) |
lubprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lubprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Ref | Expression |
---|---|
lubprop | ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lubprop.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | biid 260 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | lubprop.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 1, 2, 3, 5, 6 | lubelss 18053 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | lubval 18055 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
9 | 8 | eqcomd 2745 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆)) |
10 | 1, 3, 5, 6 | lubcl 18056 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 6 | lubeu 18054 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
12 | breq2 5082 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (𝑈‘𝑆))) | |
13 | 12 | ralbidv 3122 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆))) |
14 | breq1 5081 | . . . . . . 7 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑥 ≤ 𝑧 ↔ (𝑈‘𝑆) ≤ 𝑧)) | |
15 | 14 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
16 | 15 | ralbidv 3122 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
17 | 13, 16 | anbi12d 630 | . . . 4 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)))) |
18 | 17 | riota2 7251 | . . 3 ⊢ (((𝑈‘𝑆) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆))) |
19 | 10, 11, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆))) |
20 | 9, 19 | mpbird 256 | 1 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃!wreu 3067 class class class wbr 5078 dom cdm 5588 ‘cfv 6430 ℩crio 7224 Basecbs 16893 lecple 16950 lubclub 18008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-lub 18045 |
This theorem is referenced by: luble 18058 lublem 18209 |
Copyright terms: Public domain | W3C validator |