| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubprop | Structured version Visualization version GIF version | ||
| Description: Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| lubprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubprop.l | ⊢ ≤ = (le‘𝐾) |
| lubprop.u | ⊢ 𝑈 = (lub‘𝐾) |
| lubprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lubprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| Ref | Expression |
|---|---|
| lubprop | ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lubprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lubprop.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 4 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
| 5 | lubprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | lubprop.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 1, 2, 3, 5, 6 | lubelss 18369 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 7 | lubval 18371 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
| 9 | 8 | eqcomd 2740 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆)) |
| 10 | 1, 3, 5, 6 | lubcl 18372 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
| 11 | 1, 2, 3, 4, 5, 6 | lubeu 18370 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
| 12 | breq2 5127 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (𝑈‘𝑆))) | |
| 13 | 12 | ralbidv 3165 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆))) |
| 14 | breq1 5126 | . . . . . . 7 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑥 ≤ 𝑧 ↔ (𝑈‘𝑆) ≤ 𝑧)) | |
| 15 | 14 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| 16 | 15 | ralbidv 3165 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| 17 | 13, 16 | anbi12d 632 | . . . 4 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)))) |
| 18 | 17 | riota2 7395 | . . 3 ⊢ (((𝑈‘𝑆) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) → ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆))) |
| 19 | 10, 11, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (𝑈‘𝑆))) |
| 20 | 9, 19 | mpbird 257 | 1 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 ℩crio 7369 Basecbs 17230 lecple 17281 lubclub 18326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-lub 18361 |
| This theorem is referenced by: luble 18374 lublem 18525 |
| Copyright terms: Public domain | W3C validator |