|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lubl | Structured version Visualization version GIF version | ||
| Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) | 
| lublem.l | ⊢ ≤ = (le‘𝐾) | 
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) | 
| Ref | Expression | 
|---|---|
| lubl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lublem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lublem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lublem.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 4 | 1, 2, 3 | lublem 18555 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | 
| 5 | 4 | simprd 495 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) | 
| 6 | breq2 5147 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑋)) | |
| 7 | 6 | ralbidv 3178 | . . . 4 ⊢ (𝑧 = 𝑋 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋)) | 
| 8 | breq2 5147 | . . . 4 ⊢ (𝑧 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑧 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
| 9 | 7, 8 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑋 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋))) | 
| 10 | 9 | rspccva 3621 | . 2 ⊢ ((∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | 
| 11 | 5, 10 | stoic3 1776 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 lubclub 18355 CLatccla 18543 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-lub 18391 df-clat 18544 | 
| This theorem is referenced by: lubss 18558 lubun 18560 | 
| Copyright terms: Public domain | W3C validator |