Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubl | Structured version Visualization version GIF version |
Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
lublem.l | ⊢ ≤ = (le‘𝐾) |
lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lublem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lublem.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | 1, 2, 3 | lublem 18143 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
5 | 4 | simprd 495 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) |
6 | breq2 5074 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑋)) | |
7 | 6 | ralbidv 3120 | . . . 4 ⊢ (𝑧 = 𝑋 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋)) |
8 | breq2 5074 | . . . 4 ⊢ (𝑧 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑧 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
9 | 7, 8 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑋 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋))) |
10 | 9 | rspccva 3551 | . 2 ⊢ ((∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
11 | 5, 10 | stoic3 1780 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 lubclub 17942 CLatccla 18131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-lub 17979 df-clat 18132 |
This theorem is referenced by: lubss 18146 lubun 18148 |
Copyright terms: Public domain | W3C validator |