![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubl | Structured version Visualization version GIF version |
Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | β’ π΅ = (BaseβπΎ) |
lublem.l | β’ β€ = (leβπΎ) |
lublem.u | β’ π = (lubβπΎ) |
Ref | Expression |
---|---|
lubl | β’ ((πΎ β CLat β§ π β π΅ β§ π β π΅) β (βπ¦ β π π¦ β€ π β (πβπ) β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublem.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | lublem.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | lublem.u | . . . 4 β’ π = (lubβπΎ) | |
4 | 1, 2, 3 | lublem 18469 | . . 3 β’ ((πΎ β CLat β§ π β π΅) β (βπ¦ β π π¦ β€ (πβπ) β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§))) |
5 | 4 | simprd 494 | . 2 β’ ((πΎ β CLat β§ π β π΅) β βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§)) |
6 | breq2 5153 | . . . . 5 β’ (π§ = π β (π¦ β€ π§ β π¦ β€ π)) | |
7 | 6 | ralbidv 3175 | . . . 4 β’ (π§ = π β (βπ¦ β π π¦ β€ π§ β βπ¦ β π π¦ β€ π)) |
8 | breq2 5153 | . . . 4 β’ (π§ = π β ((πβπ) β€ π§ β (πβπ) β€ π)) | |
9 | 7, 8 | imbi12d 343 | . . 3 β’ (π§ = π β ((βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§) β (βπ¦ β π π¦ β€ π β (πβπ) β€ π))) |
10 | 9 | rspccva 3612 | . 2 β’ ((βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§) β§ π β π΅) β (βπ¦ β π π¦ β€ π β (πβπ) β€ π)) |
11 | 5, 10 | stoic3 1776 | 1 β’ ((πΎ β CLat β§ π β π΅ β§ π β π΅) β (βπ¦ β π π¦ β€ π β (πβπ) β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 β wss 3949 class class class wbr 5149 βcfv 6544 Basecbs 17150 lecple 17210 lubclub 18268 CLatccla 18457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-lub 18305 df-clat 18458 |
This theorem is referenced by: lubss 18472 lubun 18474 |
Copyright terms: Public domain | W3C validator |