| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubl | Structured version Visualization version GIF version | ||
| Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublem.l | ⊢ ≤ = (le‘𝐾) |
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lublem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lublem.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 4 | 1, 2, 3 | lublem 18451 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| 5 | 4 | simprd 495 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧)) |
| 6 | breq2 5106 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑋)) | |
| 7 | 6 | ralbidv 3156 | . . . 4 ⊢ (𝑧 = 𝑋 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋)) |
| 8 | breq2 5106 | . . . 4 ⊢ (𝑧 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑧 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
| 9 | 7, 8 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑋 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋))) |
| 10 | 9 | rspccva 3584 | . 2 ⊢ ((∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧) ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
| 11 | 5, 10 | stoic3 1776 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 lubclub 18250 CLatccla 18439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-lub 18285 df-clat 18440 |
| This theorem is referenced by: lubss 18454 lubun 18456 |
| Copyright terms: Public domain | W3C validator |