MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubss Structured version   Visualization version   GIF version

Theorem lubss 18419
Description: Subset law for least upper bounds. (chsupss 31290 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))

Proof of Theorem lubss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
2 sstr2 3942 . . . . 5 (𝑆𝑇 → (𝑇𝐵𝑆𝐵))
32impcom 407 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
433adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
5 lublem.b . . . . 5 𝐵 = (Base‘𝐾)
6 lublem.u . . . . 5 𝑈 = (lub‘𝐾)
75, 6clatlubcl 18409 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
873adant3 1132 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑇) ∈ 𝐵)
91, 4, 83jca 1128 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵))
10 simpl1 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
11 simpl2 1193 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
12 ssel2 3930 . . . . 5 ((𝑆𝑇𝑦𝑆) → 𝑦𝑇)
13123ad2antl3 1188 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
14 lublem.l . . . . 5 = (le‘𝐾)
155, 14, 6lubub 18417 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → 𝑦 (𝑈𝑇))
1610, 11, 13, 15syl3anc 1373 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦 (𝑈𝑇))
1716ralrimiva 3121 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 𝑦 (𝑈𝑇))
185, 14, 6lubl 18418 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑇) → (𝑈𝑆) (𝑈𝑇)))
199, 17, 18sylc 65 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903   class class class wbr 5092  cfv 6482  Basecbs 17120  lecple 17168  lubclub 18215  CLatccla 18404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-lub 18250  df-glb 18251  df-clat 18405
This theorem is referenced by:  lubel  18420  atlatmstc  39318  atlatle  39319  pmaple  39760  paddunN  39926  poml4N  39952
  Copyright terms: Public domain W3C validator