MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubss Structured version   Visualization version   GIF version

Theorem lubss 18479
Description: Subset law for least upper bounds. (chsupss 31278 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))

Proof of Theorem lubss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
2 sstr2 3956 . . . . 5 (𝑆𝑇 → (𝑇𝐵𝑆𝐵))
32impcom 407 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
433adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
5 lublem.b . . . . 5 𝐵 = (Base‘𝐾)
6 lublem.u . . . . 5 𝑈 = (lub‘𝐾)
75, 6clatlubcl 18469 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
873adant3 1132 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑇) ∈ 𝐵)
91, 4, 83jca 1128 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵))
10 simpl1 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
11 simpl2 1193 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
12 ssel2 3944 . . . . 5 ((𝑆𝑇𝑦𝑆) → 𝑦𝑇)
13123ad2antl3 1188 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
14 lublem.l . . . . 5 = (le‘𝐾)
155, 14, 6lubub 18477 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → 𝑦 (𝑈𝑇))
1610, 11, 13, 15syl3anc 1373 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦 (𝑈𝑇))
1716ralrimiva 3126 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 𝑦 (𝑈𝑇))
185, 14, 6lubl 18478 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑇) → (𝑈𝑆) (𝑈𝑇)))
199, 17, 18sylc 65 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  lubclub 18277  CLatccla 18464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-lub 18312  df-glb 18313  df-clat 18465
This theorem is referenced by:  lubel  18480  atlatmstc  39319  atlatle  39320  pmaple  39762  paddunN  39928  poml4N  39954
  Copyright terms: Public domain W3C validator