Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubss | Structured version Visualization version GIF version |
Description: Subset law for least upper bounds. (chsupss 30061 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
lublem.l | ⊢ ≤ = (le‘𝐾) |
lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
2 | sstr2 3949 | . . . . 5 ⊢ (𝑆 ⊆ 𝑇 → (𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵)) | |
3 | 2 | impcom 409 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
5 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
7 | 5, 6 | clatlubcl 18326 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝑈‘𝑇) ∈ 𝐵) |
8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑇) ∈ 𝐵) |
9 | 1, 4, 8 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵)) |
10 | simpl1 1191 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
11 | simpl2 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
12 | ssel2 3937 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) | |
13 | 12 | 3ad2antl3 1187 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
14 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
15 | 5, 14, 6 | lubub 18334 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → 𝑦 ≤ (𝑈‘𝑇)) |
16 | 10, 11, 13, 15 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ (𝑈‘𝑇)) |
17 | 16 | ralrimiva 3141 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇)) |
18 | 5, 14, 6 | lubl 18335 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇))) |
19 | 9, 17, 18 | sylc 65 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3908 class class class wbr 5103 ‘cfv 6491 Basecbs 17017 lecple 17074 lubclub 18132 CLatccla 18321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5528 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-lub 18169 df-glb 18170 df-clat 18322 |
This theorem is referenced by: lubel 18337 atlatmstc 37641 atlatle 37642 pmaple 38084 paddunN 38250 poml4N 38276 |
Copyright terms: Public domain | W3C validator |