| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubss | Structured version Visualization version GIF version | ||
| Description: Subset law for least upper bounds. (chsupss 31278 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublem.l | ⊢ ≤ = (le‘𝐾) |
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
| 2 | sstr2 3956 | . . . . 5 ⊢ (𝑆 ⊆ 𝑇 → (𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵)) | |
| 3 | 2 | impcom 407 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 5 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 7 | 5, 6 | clatlubcl 18469 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝑈‘𝑇) ∈ 𝐵) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑇) ∈ 𝐵) |
| 9 | 1, 4, 8 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵)) |
| 10 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
| 11 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
| 12 | ssel2 3944 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) | |
| 13 | 12 | 3ad2antl3 1188 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
| 14 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 15 | 5, 14, 6 | lubub 18477 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → 𝑦 ≤ (𝑈‘𝑇)) |
| 16 | 10, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ (𝑈‘𝑇)) |
| 17 | 16 | ralrimiva 3126 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇)) |
| 18 | 5, 14, 6 | lubl 18478 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇))) |
| 19 | 9, 17, 18 | sylc 65 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 lubclub 18277 CLatccla 18464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-lub 18312 df-glb 18313 df-clat 18465 |
| This theorem is referenced by: lubel 18480 atlatmstc 39319 atlatle 39320 pmaple 39762 paddunN 39928 poml4N 39954 |
| Copyright terms: Public domain | W3C validator |