|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lubss | Structured version Visualization version GIF version | ||
| Description: Subset law for least upper bounds. (chsupss 31361 analog.) (Contributed by NM, 20-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) | 
| lublem.l | ⊢ ≤ = (le‘𝐾) | 
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) | 
| Ref | Expression | 
|---|---|
| lubss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1137 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
| 2 | sstr2 3990 | . . . . 5 ⊢ (𝑆 ⊆ 𝑇 → (𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵)) | |
| 3 | 2 | impcom 407 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) | 
| 4 | 3 | 3adant1 1131 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) | 
| 5 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 7 | 5, 6 | clatlubcl 18548 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝑈‘𝑇) ∈ 𝐵) | 
| 8 | 7 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑇) ∈ 𝐵) | 
| 9 | 1, 4, 8 | 3jca 1129 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵)) | 
| 10 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
| 11 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
| 12 | ssel2 3978 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) | |
| 13 | 12 | 3ad2antl3 1188 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) | 
| 14 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 15 | 5, 14, 6 | lubub 18556 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → 𝑦 ≤ (𝑈‘𝑇)) | 
| 16 | 10, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ (𝑈‘𝑇)) | 
| 17 | 16 | ralrimiva 3146 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇)) | 
| 18 | 5, 14, 6 | lubl 18557 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇))) | 
| 19 | 9, 17, 18 | sylc 65 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 lubclub 18355 CLatccla 18543 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-lub 18391 df-glb 18392 df-clat 18544 | 
| This theorem is referenced by: lubel 18559 atlatmstc 39320 atlatle 39321 pmaple 39763 paddunN 39929 poml4N 39955 | 
| Copyright terms: Public domain | W3C validator |