MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubss Structured version   Visualization version   GIF version

Theorem lubss 18528
Description: Subset law for least upper bounds. (chsupss 31328 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))

Proof of Theorem lubss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
2 sstr2 3970 . . . . 5 (𝑆𝑇 → (𝑇𝐵𝑆𝐵))
32impcom 407 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
433adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
5 lublem.b . . . . 5 𝐵 = (Base‘𝐾)
6 lublem.u . . . . 5 𝑈 = (lub‘𝐾)
75, 6clatlubcl 18518 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
873adant3 1132 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑇) ∈ 𝐵)
91, 4, 83jca 1128 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵))
10 simpl1 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
11 simpl2 1193 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
12 ssel2 3958 . . . . 5 ((𝑆𝑇𝑦𝑆) → 𝑦𝑇)
13123ad2antl3 1188 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
14 lublem.l . . . . 5 = (le‘𝐾)
155, 14, 6lubub 18526 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → 𝑦 (𝑈𝑇))
1610, 11, 13, 15syl3anc 1373 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦 (𝑈𝑇))
1716ralrimiva 3133 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 𝑦 (𝑈𝑇))
185, 14, 6lubl 18527 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑇) → (𝑈𝑆) (𝑈𝑇)))
199, 17, 18sylc 65 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝑈𝑆) (𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  lubclub 18326  CLatccla 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-lub 18361  df-glb 18362  df-clat 18514
This theorem is referenced by:  lubel  18529  atlatmstc  39342  atlatle  39343  pmaple  39785  paddunN  39951  poml4N  39977
  Copyright terms: Public domain W3C validator