| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubss | Structured version Visualization version GIF version | ||
| Description: Subset law for least upper bounds. (chsupss 31322 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublem.l | ⊢ ≤ = (le‘𝐾) |
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
| 2 | sstr2 3936 | . . . . 5 ⊢ (𝑆 ⊆ 𝑇 → (𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵)) | |
| 3 | 2 | impcom 407 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 5 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 7 | 5, 6 | clatlubcl 18409 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝑈‘𝑇) ∈ 𝐵) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑇) ∈ 𝐵) |
| 9 | 1, 4, 8 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵)) |
| 10 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
| 11 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
| 12 | ssel2 3924 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) | |
| 13 | 12 | 3ad2antl3 1188 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
| 14 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 15 | 5, 14, 6 | lubub 18417 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → 𝑦 ≤ (𝑈‘𝑇)) |
| 16 | 10, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ (𝑈‘𝑇)) |
| 17 | 16 | ralrimiva 3124 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇)) |
| 18 | 5, 14, 6 | lubl 18418 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ (𝑈‘𝑇) ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇))) |
| 19 | 9, 17, 18 | sylc 65 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 lubclub 18215 CLatccla 18404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-lub 18250 df-glb 18251 df-clat 18405 |
| This theorem is referenced by: lubel 18420 atlatmstc 39417 atlatle 39418 pmaple 39859 paddunN 40025 poml4N 40051 |
| Copyright terms: Public domain | W3C validator |