Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubub | Structured version Visualization version GIF version |
Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
lublem.l | ⊢ ≤ = (le‘𝐾) |
lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubub | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lublem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lublem.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | 1, 2, 3 | lublem 18326 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
5 | 4 | simpld 496 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆)) |
6 | breq1 5100 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ (𝑈‘𝑆) ↔ 𝑋 ≤ (𝑈‘𝑆))) | |
7 | 6 | rspccva 3573 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
8 | 5, 7 | stoic3 1778 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3902 class class class wbr 5097 ‘cfv 6484 Basecbs 17010 lecple 17067 lubclub 18125 CLatccla 18314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-lub 18162 df-clat 18315 |
This theorem is referenced by: lubss 18329 |
Copyright terms: Public domain | W3C validator |