MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubub Structured version   Visualization version   GIF version

Theorem lubub 17732
Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubub ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋 (𝑈𝑆))

Proof of Theorem lubub
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lublem.b . . . 4 𝐵 = (Base‘𝐾)
2 lublem.l . . . 4 = (le‘𝐾)
3 lublem.u . . . 4 𝑈 = (lub‘𝐾)
41, 2, 3lublem 17731 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
54simpld 497 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ∀𝑦𝑆 𝑦 (𝑈𝑆))
6 breq1 5072 . . 3 (𝑦 = 𝑋 → (𝑦 (𝑈𝑆) ↔ 𝑋 (𝑈𝑆)))
76rspccva 3625 . 2 ((∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ 𝑋𝑆) → 𝑋 (𝑈𝑆))
85, 7stoic3 1776 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wss 3939   class class class wbr 5069  cfv 6358  Basecbs 16486  lecple 16575  lubclub 17555  CLatccla 17720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-lub 17587  df-clat 17721
This theorem is referenced by:  lubss  17734
  Copyright terms: Public domain W3C validator