Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd0 Structured version   Visualization version   GIF version

Theorem mapd0 41644
Description: Projectivity map of the zero subspace. Part of property (f) in [Baer] p. 40. TODO: does proof need to be this long for this simple fact? (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
mapd0.h 𝐻 = (LHyp‘𝐾)
mapd0.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd0.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd0.o 𝑂 = (0g𝑈)
mapd0.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapd0.z 0 = (0g𝐶)
mapd0.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd0 (𝜑 → (𝑀‘{𝑂}) = { 0 })

Proof of Theorem mapd0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd0.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapd0.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2729 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4 eqid 2729 . . 3 (LFnl‘𝑈) = (LFnl‘𝑈)
5 eqid 2729 . . 3 (LKer‘𝑈) = (LKer‘𝑈)
6 eqid 2729 . . 3 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
7 mapd0.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapd0.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 8dvhlmod 41089 . . . 4 (𝜑𝑈 ∈ LMod)
10 mapd0.o . . . . 5 𝑂 = (0g𝑈)
1110, 3lsssn0 20869 . . . 4 (𝑈 ∈ LMod → {𝑂} ∈ (LSubSp‘𝑈))
129, 11syl 17 . . 3 (𝜑 → {𝑂} ∈ (LSubSp‘𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 12mapdval 41607 . 2 (𝜑 → (𝑀‘{𝑂}) = {𝑓 ∈ (LFnl‘𝑈) ∣ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂})})
14 simprrr 781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})
159adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → 𝑈 ∈ LMod)
168adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑈) = (Base‘𝑈)
18 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → 𝑔 ∈ (LFnl‘𝑈))
1917, 4, 5, 15, 18lkrssv 39074 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → ((LKer‘𝑈)‘𝑔) ⊆ (Base‘𝑈))
201, 2, 17, 3, 6dochlss 41333 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LKer‘𝑈)‘𝑔) ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ∈ (LSubSp‘𝑈))
2116, 19, 20syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ∈ (LSubSp‘𝑈))
2210, 3lssle0 20871 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ∈ (LSubSp‘𝑈)) → ((((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂} ↔ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) = {𝑂}))
2315, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → ((((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂} ↔ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) = {𝑂}))
2414, 23mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) = {𝑂})
2524fveq2d 6830 . . . . . . . . 9 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = (((ocH‘𝐾)‘𝑊)‘{𝑂}))
26 simprrl 780 . . . . . . . . 9 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔))
271, 2, 6, 17, 10doch0 41337 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((ocH‘𝐾)‘𝑊)‘{𝑂}) = (Base‘𝑈))
288, 27syl 17 . . . . . . . . . 10 (𝜑 → (((ocH‘𝐾)‘𝑊)‘{𝑂}) = (Base‘𝑈))
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((ocH‘𝐾)‘𝑊)‘{𝑂}) = (Base‘𝑈))
3025, 26, 293eqtr3d 2772 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → ((LKer‘𝑈)‘𝑔) = (Base‘𝑈))
31 eqid 2729 . . . . . . . . . 10 (Scalar‘𝑈) = (Scalar‘𝑈)
32 eqid 2729 . . . . . . . . . 10 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
3331, 32, 17, 4, 5lkr0f 39072 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑔 ∈ (LFnl‘𝑈)) → (((LKer‘𝑈)‘𝑔) = (Base‘𝑈) ↔ 𝑔 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))
3415, 18, 33syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → (((LKer‘𝑈)‘𝑔) = (Base‘𝑈) ↔ 𝑔 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))
3530, 34mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → 𝑔 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))
36 mapd0.c . . . . . . . . 9 𝐶 = ((LCDual‘𝐾)‘𝑊)
37 mapd0.z . . . . . . . . 9 0 = (0g𝐶)
381, 2, 17, 31, 32, 36, 37, 8lcd0v 41590 . . . . . . . 8 (𝜑0 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))
3938adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → 0 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))
4035, 39eqtr4d 2767 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))) → 𝑔 = 0 )
4140ex 412 . . . . 5 (𝜑 → ((𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})) → 𝑔 = 0 ))
42 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
431, 36, 42, 37, 8lcd0vcl 41593 . . . . . . . 8 (𝜑0 ∈ (Base‘𝐶))
441, 36, 42, 2, 4, 8, 43lcdvbaselfl 41574 . . . . . . 7 (𝜑0 ∈ (LFnl‘𝑈))
4531, 32, 17, 4, 5lkr0f 39072 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ 0 ∈ (LFnl‘𝑈)) → (((LKer‘𝑈)‘ 0 ) = (Base‘𝑈) ↔ 0 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))
469, 44, 45syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((LKer‘𝑈)‘ 0 ) = (Base‘𝑈) ↔ 0 = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))
4738, 46mpbird 257 . . . . . . . . . . 11 (𝜑 → ((LKer‘𝑈)‘ 0 ) = (Base‘𝑈))
4847fveq2d 6830 . . . . . . . . . 10 (𝜑 → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) = (((ocH‘𝐾)‘𝑊)‘(Base‘𝑈)))
4948fveq2d 6830 . . . . . . . . 9 (𝜑 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘(Base‘𝑈))))
501, 2, 6, 17, 8dochoc1 41340 . . . . . . . . 9 (𝜑 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘(Base‘𝑈))) = (Base‘𝑈))
5149, 50eqtrd 2764 . . . . . . . 8 (𝜑 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = (Base‘𝑈))
5251, 47eqtr4d 2767 . . . . . . 7 (𝜑 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = ((LKer‘𝑈)‘ 0 ))
531, 2, 6, 17, 10doch1 41338 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((ocH‘𝐾)‘𝑊)‘(Base‘𝑈)) = {𝑂})
548, 53syl 17 . . . . . . . . 9 (𝜑 → (((ocH‘𝐾)‘𝑊)‘(Base‘𝑈)) = {𝑂})
5548, 54eqtrd 2764 . . . . . . . 8 (𝜑 → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) = {𝑂})
56 eqimss 3996 . . . . . . . 8 ((((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) = {𝑂} → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂})
5755, 56syl 17 . . . . . . 7 (𝜑 → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂})
5844, 52, 57jca32 515 . . . . . 6 (𝜑 → ( 0 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = ((LKer‘𝑈)‘ 0 ) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂})))
59 eleq1 2816 . . . . . . 7 (𝑔 = 0 → (𝑔 ∈ (LFnl‘𝑈) ↔ 0 ∈ (LFnl‘𝑈)))
60 2fveq3 6831 . . . . . . . . . 10 (𝑔 = 0 → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) = (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )))
6160fveq2d 6830 . . . . . . . . 9 (𝑔 = 0 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))))
62 fveq2 6826 . . . . . . . . 9 (𝑔 = 0 → ((LKer‘𝑈)‘𝑔) = ((LKer‘𝑈)‘ 0 ))
6361, 62eqeq12d 2745 . . . . . . . 8 (𝑔 = 0 → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = ((LKer‘𝑈)‘ 0 )))
6460sseq1d 3969 . . . . . . . 8 (𝑔 = 0 → ((((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂} ↔ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂}))
6563, 64anbi12d 632 . . . . . . 7 (𝑔 = 0 → (((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}) ↔ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = ((LKer‘𝑈)‘ 0 ) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂})))
6659, 65anbi12d 632 . . . . . 6 (𝑔 = 0 → ((𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})) ↔ ( 0 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 ))) = ((LKer‘𝑈)‘ 0 ) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘ 0 )) ⊆ {𝑂}))))
6758, 66syl5ibrcom 247 . . . . 5 (𝜑 → (𝑔 = 0 → (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))))
6841, 67impbid 212 . . . 4 (𝜑 → ((𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})) ↔ 𝑔 = 0 ))
69 2fveq3 6831 . . . . . . . 8 (𝑓 = 𝑔 → (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) = (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)))
7069fveq2d 6830 . . . . . . 7 (𝑓 = 𝑔 → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))))
71 fveq2 6826 . . . . . . 7 (𝑓 = 𝑔 → ((LKer‘𝑈)‘𝑓) = ((LKer‘𝑈)‘𝑔))
7270, 71eqeq12d 2745 . . . . . 6 (𝑓 = 𝑔 → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)))
7369sseq1d 3969 . . . . . 6 (𝑓 = 𝑔 → ((((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂} ↔ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂}))
7472, 73anbi12d 632 . . . . 5 (𝑓 = 𝑔 → (((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂}) ↔ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})))
7574elrab 3650 . . . 4 (𝑔 ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂})} ↔ (𝑔 ∈ (LFnl‘𝑈) ∧ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔)) ⊆ {𝑂})))
76 velsn 4595 . . . 4 (𝑔 ∈ { 0 } ↔ 𝑔 = 0 )
7768, 75, 763bitr4g 314 . . 3 (𝜑 → (𝑔 ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂})} ↔ 𝑔 ∈ { 0 }))
7877eqrdv 2727 . 2 (𝜑 → {𝑓 ∈ (LFnl‘𝑈) ∣ ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓) ∧ (((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓)) ⊆ {𝑂})} = { 0 })
7913, 78eqtrd 2764 1 (𝜑 → (𝑀‘{𝑂}) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  {csn 4579   × cxp 5621  cfv 6486  Basecbs 17138  Scalarcsca 17182  0gc0g 17361  LModclmod 20781  LSubSpclss 20852  LFnlclfn 39035  LKerclk 39063  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326  LCDualclcd 41565  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604
This theorem is referenced by:  mapdcnvatN  41645  mapdat  41646  mapdspex  41647  mapdn0  41648  hdmap10  41819  hdmapeq0  41823
  Copyright terms: Public domain W3C validator