Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwssnf1o | Structured version Visualization version GIF version |
Description: Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwssnf1o.y | ⊢ 𝑌 = (𝑅 ↑s {𝐼}) |
pwssnf1o.b | ⊢ 𝐵 = (Base‘𝑅) |
pwssnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ ({𝐼} × {𝑥})) |
pwssnf1o.c | ⊢ 𝐶 = (Base‘𝑌) |
Ref | Expression |
---|---|
pwssnf1o | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssnf1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6806 | . . 3 ⊢ 𝐵 ∈ V |
3 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
4 | pwssnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ ({𝐼} × {𝑥})) | |
5 | 4 | mapsnf1o 8747 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→(𝐵 ↑m {𝐼})) |
6 | 2, 3, 5 | sylancr 586 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→(𝐵 ↑m {𝐼})) |
7 | pwssnf1o.c | . . . 4 ⊢ 𝐶 = (Base‘𝑌) | |
8 | snex 5357 | . . . . . 6 ⊢ {𝐼} ∈ V | |
9 | pwssnf1o.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s {𝐼}) | |
10 | 9, 1 | pwsbas 17226 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ {𝐼} ∈ V) → (𝐵 ↑m {𝐼}) = (Base‘𝑌)) |
11 | 8, 10 | mpan2 687 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐵 ↑m {𝐼}) = (Base‘𝑌)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m {𝐼}) = (Base‘𝑌)) |
13 | 7, 12 | eqtr4id 2792 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐶 = (𝐵 ↑m {𝐼})) |
14 | 13 | f1oeq3d 6731 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→(𝐵 ↑m {𝐼}))) |
15 | 6, 14 | mpbird 256 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 Vcvv 3434 {csn 4564 ↦ cmpt 5160 × cxp 5589 –1-1-onto→wf1o 6446 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 Basecbs 16940 ↑s cpws 17185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-slot 16911 df-ndx 16923 df-base 16941 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-hom 17014 df-cco 17015 df-prds 17186 df-pws 17188 |
This theorem is referenced by: pwslnmlem1 40941 |
Copyright terms: Public domain | W3C validator |