| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13195. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11274 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11274 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax1 13184 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ifcif 4498 class class class wbr 5117 ℝcr 11121 ℝ*cxr 11261 ≤ cle 11263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 |
| This theorem is referenced by: z2ge 13207 ssfzunsnext 13576 uzsup 13870 expmulnbnd 14243 discr1 14247 rexuzre 15360 rexico 15361 caubnd 15366 limsupgre 15486 limsupbnd2 15488 rlim3 15503 lo1bdd2 15529 o1lo1 15542 rlimclim1 15550 lo1mul 15633 rlimno1 15659 cvgrat 15888 ruclem10 16244 bitsfzo 16441 1arith 16934 setsstruct2 17180 evth 24896 ioombl1lem1 25498 mbfi1flimlem 25662 itg2monolem3 25692 iblre 25734 itgreval 25737 iblss 25745 i1fibl 25748 itgitg1 25749 itgle 25750 itgeqa 25754 iblconst 25758 itgconst 25759 ibladdlem 25760 itgaddlem2 25764 iblabslem 25768 iblabsr 25770 iblmulc2 25771 itgmulc2lem2 25773 itgsplit 25776 plyaddlem1 26157 coeaddlem 26193 o1cxp 26923 cxp2lim 26925 cxploglim2 26927 ftalem1 27021 ftalem2 27022 chtppilim 27424 dchrisumlem3 27440 ostth2lem2 27583 ostth3 27587 knoppndvlem18 36476 ibladdnclem 37629 itgaddnclem2 37632 iblabsnclem 37636 iblmulc2nc 37638 itgmulc2nclem2 37640 ftc1anclem5 37650 irrapxlem4 42780 irrapxlem5 42781 rexabslelem 45379 uzublem 45391 max1d 45411 uzubioo 45530 climsuse 45573 limsupubuzlem 45677 limsupmnfuzlem 45691 limsupequzmptlem 45693 limsupre3uzlem 45700 liminflelimsuplem 45740 ioodvbdlimc1lem2 45897 ioodvbdlimc2lem 45899 |
| Copyright terms: Public domain | W3C validator |