| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13082. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11155 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11155 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax1 13071 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ifcif 4475 class class class wbr 5091 ℝcr 11002 ℝ*cxr 11142 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: z2ge 13094 ssfzunsnext 13466 uzsup 13764 expmulnbnd 14139 discr1 14143 rexuzre 15257 rexico 15258 caubnd 15263 limsupgre 15385 limsupbnd2 15387 rlim3 15402 lo1bdd2 15428 o1lo1 15441 rlimclim1 15449 lo1mul 15532 rlimno1 15558 cvgrat 15787 ruclem10 16145 bitsfzo 16343 1arith 16836 setsstruct2 17082 evth 24883 ioombl1lem1 25484 mbfi1flimlem 25648 itg2monolem3 25678 iblre 25720 itgreval 25723 iblss 25731 i1fibl 25734 itgitg1 25735 itgle 25736 itgeqa 25740 iblconst 25744 itgconst 25745 ibladdlem 25746 itgaddlem2 25750 iblabslem 25754 iblabsr 25756 iblmulc2 25757 itgmulc2lem2 25759 itgsplit 25762 plyaddlem1 26143 coeaddlem 26179 o1cxp 26910 cxp2lim 26912 cxploglim2 26914 ftalem1 27008 ftalem2 27009 chtppilim 27411 dchrisumlem3 27427 ostth2lem2 27570 ostth3 27574 knoppndvlem18 36562 ibladdnclem 37715 itgaddnclem2 37718 iblabsnclem 37722 iblmulc2nc 37724 itgmulc2nclem2 37726 ftc1anclem5 37736 irrapxlem4 42857 irrapxlem5 42858 rexabslelem 45455 uzublem 45467 max1d 45487 uzubioo 45604 climsuse 45647 limsupubuzlem 45749 limsupmnfuzlem 45763 limsupequzmptlem 45765 limsupre3uzlem 45772 liminflelimsuplem 45812 ioodvbdlimc1lem2 45969 ioodvbdlimc2lem 45971 |
| Copyright terms: Public domain | W3C validator |