| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13146. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11220 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11220 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax1 13135 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4488 class class class wbr 5107 ℝcr 11067 ℝ*cxr 11207 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: z2ge 13158 ssfzunsnext 13530 uzsup 13825 expmulnbnd 14200 discr1 14204 rexuzre 15319 rexico 15320 caubnd 15325 limsupgre 15447 limsupbnd2 15449 rlim3 15464 lo1bdd2 15490 o1lo1 15503 rlimclim1 15511 lo1mul 15594 rlimno1 15620 cvgrat 15849 ruclem10 16207 bitsfzo 16405 1arith 16898 setsstruct2 17144 evth 24858 ioombl1lem1 25459 mbfi1flimlem 25623 itg2monolem3 25653 iblre 25695 itgreval 25698 iblss 25706 i1fibl 25709 itgitg1 25710 itgle 25711 itgeqa 25715 iblconst 25719 itgconst 25720 ibladdlem 25721 itgaddlem2 25725 iblabslem 25729 iblabsr 25731 iblmulc2 25732 itgmulc2lem2 25734 itgsplit 25737 plyaddlem1 26118 coeaddlem 26154 o1cxp 26885 cxp2lim 26887 cxploglim2 26889 ftalem1 26983 ftalem2 26984 chtppilim 27386 dchrisumlem3 27402 ostth2lem2 27545 ostth3 27549 knoppndvlem18 36517 ibladdnclem 37670 itgaddnclem2 37673 iblabsnclem 37677 iblmulc2nc 37679 itgmulc2nclem2 37681 ftc1anclem5 37691 irrapxlem4 42813 irrapxlem5 42814 rexabslelem 45414 uzublem 45426 max1d 45446 uzubioo 45563 climsuse 45606 limsupubuzlem 45710 limsupmnfuzlem 45724 limsupequzmptlem 45726 limsupre3uzlem 45733 liminflelimsuplem 45773 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 |
| Copyright terms: Public domain | W3C validator |