Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. See also max1ALT 12633. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10738 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10738 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax1 12622 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 598 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ifcif 4423 class class class wbr 5036 ℝcr 10587 ℝ*cxr 10725 ≤ cle 10727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-pre-lttri 10662 ax-pre-lttrn 10663 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 |
This theorem is referenced by: z2ge 12645 ssfzunsnext 13014 uzsup 13293 expmulnbnd 13659 discr1 13663 rexuzre 14773 rexico 14774 caubnd 14779 limsupgre 14899 limsupbnd2 14901 rlim3 14916 lo1bdd2 14942 o1lo1 14955 rlimclim1 14963 lo1mul 15045 rlimno1 15071 cvgrat 15300 ruclem10 15653 bitsfzo 15847 1arith 16331 setsstruct2 16592 evth 23673 ioombl1lem1 24271 mbfi1flimlem 24435 itg2monolem3 24465 iblre 24506 itgreval 24509 iblss 24517 i1fibl 24520 itgitg1 24521 itgle 24522 itgeqa 24526 iblconst 24530 itgconst 24531 ibladdlem 24532 itgaddlem2 24536 iblabslem 24540 iblabsr 24542 iblmulc2 24543 itgmulc2lem2 24545 itgsplit 24548 plyaddlem1 24922 coeaddlem 24958 o1cxp 25672 cxp2lim 25674 cxploglim2 25676 ftalem1 25770 ftalem2 25771 chtppilim 26171 dchrisumlem3 26187 ostth2lem2 26330 ostth3 26334 knoppndvlem18 34292 ibladdnclem 35427 itgaddnclem2 35430 iblabsnclem 35434 iblmulc2nc 35436 itgmulc2nclem2 35438 ftc1anclem5 35448 irrapxlem4 40174 irrapxlem5 40175 rexabslelem 42456 uzublem 42468 max1d 42489 uzubioo 42605 climsuse 42651 limsupubuzlem 42755 limsupmnfuzlem 42769 limsupequzmptlem 42771 limsupre3uzlem 42778 liminflelimsuplem 42818 ioodvbdlimc1lem2 42975 ioodvbdlimc2lem 42977 |
Copyright terms: Public domain | W3C validator |