| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13087. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11165 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11165 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax1 13076 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ifcif 4474 class class class wbr 5093 ℝcr 11012 ℝ*cxr 11152 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 |
| This theorem is referenced by: z2ge 13099 ssfzunsnext 13471 uzsup 13769 expmulnbnd 14144 discr1 14148 rexuzre 15262 rexico 15263 caubnd 15268 limsupgre 15390 limsupbnd2 15392 rlim3 15407 lo1bdd2 15433 o1lo1 15446 rlimclim1 15454 lo1mul 15537 rlimno1 15563 cvgrat 15792 ruclem10 16150 bitsfzo 16348 1arith 16841 setsstruct2 17087 evth 24886 ioombl1lem1 25487 mbfi1flimlem 25651 itg2monolem3 25681 iblre 25723 itgreval 25726 iblss 25734 i1fibl 25737 itgitg1 25738 itgle 25739 itgeqa 25743 iblconst 25747 itgconst 25748 ibladdlem 25749 itgaddlem2 25753 iblabslem 25757 iblabsr 25759 iblmulc2 25760 itgmulc2lem2 25762 itgsplit 25765 plyaddlem1 26146 coeaddlem 26182 o1cxp 26913 cxp2lim 26915 cxploglim2 26917 ftalem1 27011 ftalem2 27012 chtppilim 27414 dchrisumlem3 27430 ostth2lem2 27573 ostth3 27577 knoppndvlem18 36594 ibladdnclem 37736 itgaddnclem2 37739 iblabsnclem 37743 iblmulc2nc 37745 itgmulc2nclem2 37747 ftc1anclem5 37757 irrapxlem4 42942 irrapxlem5 42943 rexabslelem 45540 uzublem 45552 max1d 45572 uzubioo 45689 climsuse 45732 limsupubuzlem 45834 limsupmnfuzlem 45848 limsupequzmptlem 45850 limsupre3uzlem 45857 liminflelimsuplem 45897 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 |
| Copyright terms: Public domain | W3C validator |