Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. See also max1ALT 12920. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11021 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11021 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax1 12909 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ℝcr 10870 ℝ*cxr 11008 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: z2ge 12932 ssfzunsnext 13301 uzsup 13583 expmulnbnd 13950 discr1 13954 rexuzre 15064 rexico 15065 caubnd 15070 limsupgre 15190 limsupbnd2 15192 rlim3 15207 lo1bdd2 15233 o1lo1 15246 rlimclim1 15254 lo1mul 15337 rlimno1 15365 cvgrat 15595 ruclem10 15948 bitsfzo 16142 1arith 16628 setsstruct2 16875 evth 24122 ioombl1lem1 24722 mbfi1flimlem 24887 itg2monolem3 24917 iblre 24958 itgreval 24961 iblss 24969 i1fibl 24972 itgitg1 24973 itgle 24974 itgeqa 24978 iblconst 24982 itgconst 24983 ibladdlem 24984 itgaddlem2 24988 iblabslem 24992 iblabsr 24994 iblmulc2 24995 itgmulc2lem2 24997 itgsplit 25000 plyaddlem1 25374 coeaddlem 25410 o1cxp 26124 cxp2lim 26126 cxploglim2 26128 ftalem1 26222 ftalem2 26223 chtppilim 26623 dchrisumlem3 26639 ostth2lem2 26782 ostth3 26786 knoppndvlem18 34709 ibladdnclem 35833 itgaddnclem2 35836 iblabsnclem 35840 iblmulc2nc 35842 itgmulc2nclem2 35844 ftc1anclem5 35854 irrapxlem4 40647 irrapxlem5 40648 rexabslelem 42958 uzublem 42970 max1d 42990 uzubioo 43105 climsuse 43149 limsupubuzlem 43253 limsupmnfuzlem 43267 limsupequzmptlem 43269 limsupre3uzlem 43276 liminflelimsuplem 43316 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 |
Copyright terms: Public domain | W3C validator |