|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13229. (Contributed by NM, 3-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexr 11308 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11308 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax1 13218 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ifcif 4524 class class class wbr 5142 ℝcr 11155 ℝ*cxr 11295 ≤ cle 11297 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 | 
| This theorem is referenced by: z2ge 13241 ssfzunsnext 13610 uzsup 13904 expmulnbnd 14275 discr1 14279 rexuzre 15392 rexico 15393 caubnd 15398 limsupgre 15518 limsupbnd2 15520 rlim3 15535 lo1bdd2 15561 o1lo1 15574 rlimclim1 15582 lo1mul 15665 rlimno1 15691 cvgrat 15920 ruclem10 16276 bitsfzo 16473 1arith 16966 setsstruct2 17212 evth 24992 ioombl1lem1 25594 mbfi1flimlem 25758 itg2monolem3 25788 iblre 25830 itgreval 25833 iblss 25841 i1fibl 25844 itgitg1 25845 itgle 25846 itgeqa 25850 iblconst 25854 itgconst 25855 ibladdlem 25856 itgaddlem2 25860 iblabslem 25864 iblabsr 25866 iblmulc2 25867 itgmulc2lem2 25869 itgsplit 25872 plyaddlem1 26253 coeaddlem 26289 o1cxp 27019 cxp2lim 27021 cxploglim2 27023 ftalem1 27117 ftalem2 27118 chtppilim 27520 dchrisumlem3 27536 ostth2lem2 27679 ostth3 27683 knoppndvlem18 36531 ibladdnclem 37684 itgaddnclem2 37687 iblabsnclem 37691 iblmulc2nc 37693 itgmulc2nclem2 37695 ftc1anclem5 37705 irrapxlem4 42841 irrapxlem5 42842 rexabslelem 45434 uzublem 45446 max1d 45466 uzubioo 45585 climsuse 45628 limsupubuzlem 45732 limsupmnfuzlem 45746 limsupequzmptlem 45748 limsupre3uzlem 45755 liminflelimsuplem 45795 ioodvbdlimc1lem2 45952 ioodvbdlimc2lem 45954 | 
| Copyright terms: Public domain | W3C validator |