![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. See also max1ALT 13248. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11336 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11336 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax1 13237 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ℝcr 11183 ℝ*cxr 11323 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: z2ge 13260 ssfzunsnext 13629 uzsup 13914 expmulnbnd 14284 discr1 14288 rexuzre 15401 rexico 15402 caubnd 15407 limsupgre 15527 limsupbnd2 15529 rlim3 15544 lo1bdd2 15570 o1lo1 15583 rlimclim1 15591 lo1mul 15674 rlimno1 15702 cvgrat 15931 ruclem10 16287 bitsfzo 16481 1arith 16974 setsstruct2 17221 evth 25010 ioombl1lem1 25612 mbfi1flimlem 25777 itg2monolem3 25807 iblre 25849 itgreval 25852 iblss 25860 i1fibl 25863 itgitg1 25864 itgle 25865 itgeqa 25869 iblconst 25873 itgconst 25874 ibladdlem 25875 itgaddlem2 25879 iblabslem 25883 iblabsr 25885 iblmulc2 25886 itgmulc2lem2 25888 itgsplit 25891 plyaddlem1 26272 coeaddlem 26308 o1cxp 27036 cxp2lim 27038 cxploglim2 27040 ftalem1 27134 ftalem2 27135 chtppilim 27537 dchrisumlem3 27553 ostth2lem2 27696 ostth3 27700 knoppndvlem18 36495 ibladdnclem 37636 itgaddnclem2 37639 iblabsnclem 37643 iblmulc2nc 37645 itgmulc2nclem2 37647 ftc1anclem5 37657 irrapxlem4 42781 irrapxlem5 42782 rexabslelem 45333 uzublem 45345 max1d 45365 uzubioo 45485 climsuse 45529 limsupubuzlem 45633 limsupmnfuzlem 45647 limsupequzmptlem 45649 limsupre3uzlem 45656 liminflelimsuplem 45696 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 |
Copyright terms: Public domain | W3C validator |