MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leid Structured version   Visualization version   GIF version

Theorem leid 11308
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
leid (𝐴 ∈ ℝ → 𝐴𝐴)

Proof of Theorem leid
StepHypRef Expression
1 eqid 2724 . . . 4 𝐴 = 𝐴
21olci 863 . . 3 (𝐴 < 𝐴𝐴 = 𝐴)
3 leloe 11298 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴𝐴 ↔ (𝐴 < 𝐴𝐴 = 𝐴)))
42, 3mpbiri 258 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴𝐴)
54anidms 566 1 (𝐴 ∈ ℝ → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098   class class class wbr 5139  cr 11106   < clt 11246  cle 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-pre-lttri 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252
This theorem is referenced by:  eqle  11314  mulge0  11730  msqge0  11733  leidi  11746  leidd  11778  lemulge11  12074  lediv2a  12106  nn2ge  12237  max1ALT  13163  lo1const  15563  isumless  15789  retos  21481  itg2itg1  25590  itg20  25591  nmobndi  30500  breprexp  34136  relowlpssretop  36736  iuneqfzuzlem  44554  fmuldfeq  44809  volioc  45198  caratheodorylem1  45752
  Copyright terms: Public domain W3C validator