| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leid | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| leid | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | leloe 11209 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ 𝐴) |
| 5 | 4 | anidms 566 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11015 < clt 11156 ≤ cle 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-pre-lttri 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 |
| This theorem is referenced by: eqle 11225 mulge0 11645 msqge0 11648 leidi 11661 leidd 11693 lemulge11 11994 lediv2a 12026 nn2ge 12162 max1ALT 13095 lo1const 15538 isumless 15762 retos 21565 itg2itg1 25674 itg20 25675 nmobndi 30766 breprexp 34657 relowlpssretop 37419 iuneqfzuzlem 45447 fmuldfeq 45697 volioc 46084 caratheodorylem1 46638 |
| Copyright terms: Public domain | W3C validator |