MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leid Structured version   Visualization version   GIF version

Theorem leid 11335
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
leid (𝐴 ∈ ℝ → 𝐴𝐴)

Proof of Theorem leid
StepHypRef Expression
1 eqid 2728 . . . 4 𝐴 = 𝐴
21olci 865 . . 3 (𝐴 < 𝐴𝐴 = 𝐴)
3 leloe 11325 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴𝐴 ↔ (𝐴 < 𝐴𝐴 = 𝐴)))
42, 3mpbiri 258 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴𝐴)
54anidms 566 1 (𝐴 ∈ ℝ → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099   class class class wbr 5143  cr 11132   < clt 11273  cle 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-pre-lttri 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279
This theorem is referenced by:  eqle  11341  mulge0  11757  msqge0  11760  leidi  11773  leidd  11805  lemulge11  12101  lediv2a  12133  nn2ge  12264  max1ALT  13192  lo1const  15592  isumless  15818  retos  21544  itg2itg1  25660  itg20  25661  nmobndi  30579  breprexp  34260  relowlpssretop  36838  iuneqfzuzlem  44707  fmuldfeq  44962  volioc  45351  caratheodorylem1  45905
  Copyright terms: Public domain W3C validator