Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leid | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
leid | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 862 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
3 | leloe 10992 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ 𝐴) |
5 | 4 | anidms 566 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: eqle 11007 mulge0 11423 msqge0 11426 leidi 11439 leidd 11471 lemulge11 11767 lediv2a 11799 nn2ge 11930 max1ALT 12849 lo1const 15258 isumless 15485 retos 20735 itg2itg1 24806 itg20 24807 nmobndi 29038 breprexp 32513 relowlpssretop 35462 iuneqfzuzlem 42763 fmuldfeq 43014 volioc 43403 caratheodorylem1 43954 |
Copyright terms: Public domain | W3C validator |