Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leid | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
leid | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 863 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
3 | leloe 11154 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ 𝐴) |
5 | 4 | anidms 567 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ℝcr 10963 < clt 11102 ≤ cle 11103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-pre-lttri 11038 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 |
This theorem is referenced by: eqle 11170 mulge0 11586 msqge0 11589 leidi 11602 leidd 11634 lemulge11 11930 lediv2a 11962 nn2ge 12093 max1ALT 13013 lo1const 15421 isumless 15648 retos 20921 itg2itg1 24999 itg20 25000 nmobndi 29366 breprexp 32854 relowlpssretop 35633 iuneqfzuzlem 43197 fmuldfeq 43449 volioc 43838 caratheodorylem1 44390 |
Copyright terms: Public domain | W3C validator |