| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11286 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11286 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax2 13197 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4505 class class class wbr 5124 ℝcr 11133 ℝ*cxr 11273 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: lemaxle 13216 z2ge 13219 ssfzunsnext 13591 uzsup 13885 expmulnbnd 14258 discr1 14262 rexuzre 15376 caubnd 15382 limsupgre 15502 limsupbnd2 15504 rlim3 15519 lo1bdd2 15545 o1lo1 15558 rlimclim1 15566 lo1mul 15649 rlimno1 15675 cvgrat 15904 ruclem10 16262 bitsfzo 16459 1arith 16952 evth 24914 ioombl1lem4 25519 itg2monolem3 25710 itgle 25768 ibladdlem 25778 plyaddlem1 26175 coeaddlem 26211 o1cxp 26942 cxp2lim 26944 cxploglim2 26946 ftalem1 27040 ftalem2 27041 chtppilim 27443 dchrisumlem3 27459 ostth2lem2 27602 ostth2lem3 27603 ostth2lem4 27604 ostth3 27606 knoppndvlem18 36552 ibladdnclem 37705 ftc1anclem5 37726 irrapxlem4 42815 irrapxlem5 42816 rexabslelem 45412 uzublem 45424 max2d 45452 climsuse 45604 limsupubuzlem 45708 limsupmnfuzlem 45722 limsupequzmptlem 45724 limsupre3uzlem 45731 liminflelimsuplem 45771 ioodvbdlimc1lem2 45928 ioodvbdlimc2lem 45930 hoidifhspdmvle 46616 |
| Copyright terms: Public domain | W3C validator |