| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11227 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11227 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax2 13143 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ℝcr 11074 ℝ*cxr 11214 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: lemaxle 13162 z2ge 13165 ssfzunsnext 13537 uzsup 13832 expmulnbnd 14207 discr1 14211 rexuzre 15326 caubnd 15332 limsupgre 15454 limsupbnd2 15456 rlim3 15471 lo1bdd2 15497 o1lo1 15510 rlimclim1 15518 lo1mul 15601 rlimno1 15627 cvgrat 15856 ruclem10 16214 bitsfzo 16412 1arith 16905 evth 24865 ioombl1lem4 25469 itg2monolem3 25660 itgle 25718 ibladdlem 25728 plyaddlem1 26125 coeaddlem 26161 o1cxp 26892 cxp2lim 26894 cxploglim2 26896 ftalem1 26990 ftalem2 26991 chtppilim 27393 dchrisumlem3 27409 ostth2lem2 27552 ostth2lem3 27553 ostth2lem4 27554 ostth3 27556 knoppndvlem18 36524 ibladdnclem 37677 ftc1anclem5 37698 irrapxlem4 42820 irrapxlem5 42821 rexabslelem 45421 uzublem 45433 max2d 45461 climsuse 45613 limsupubuzlem 45717 limsupmnfuzlem 45731 limsupequzmptlem 45733 limsupre3uzlem 45740 liminflelimsuplem 45780 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 hoidifhspdmvle 46625 |
| Copyright terms: Public domain | W3C validator |