![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11305 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11305 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax2 13215 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 ℝcr 11152 ℝ*cxr 11292 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: lemaxle 13234 z2ge 13237 ssfzunsnext 13606 uzsup 13900 expmulnbnd 14271 discr1 14275 rexuzre 15388 caubnd 15394 limsupgre 15514 limsupbnd2 15516 rlim3 15531 lo1bdd2 15557 o1lo1 15570 rlimclim1 15578 lo1mul 15661 rlimno1 15687 cvgrat 15916 ruclem10 16272 bitsfzo 16469 1arith 16961 evth 25005 ioombl1lem4 25610 itg2monolem3 25802 itgle 25860 ibladdlem 25870 plyaddlem1 26267 coeaddlem 26303 o1cxp 27033 cxp2lim 27035 cxploglim2 27037 ftalem1 27131 ftalem2 27132 chtppilim 27534 dchrisumlem3 27550 ostth2lem2 27693 ostth2lem3 27694 ostth2lem4 27695 ostth3 27697 knoppndvlem18 36512 ibladdnclem 37663 ftc1anclem5 37684 irrapxlem4 42813 irrapxlem5 42814 rexabslelem 45368 uzublem 45380 max2d 45408 climsuse 45564 limsupubuzlem 45668 limsupmnfuzlem 45682 limsupequzmptlem 45684 limsupre3uzlem 45691 liminflelimsuplem 45731 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 hoidifhspdmvle 46576 |
Copyright terms: Public domain | W3C validator |