![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10372 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10372 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax2 12252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 590 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ifcif 4275 class class class wbr 4841 ℝcr 10221 ℝ*cxr 10360 ≤ cle 10362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 |
This theorem is referenced by: lemaxle 12271 z2ge 12274 ssfzunsnext 12636 uzsup 12913 expmulnbnd 13246 discr1 13250 rexuzre 14430 caubnd 14436 limsupgre 14550 limsupbnd2 14552 rlim3 14567 lo1bdd2 14593 o1lo1 14606 rlimclim1 14614 lo1mul 14696 rlimno1 14722 cvgrat 14949 ruclem10 15301 bitsfzo 15489 1arith 15961 evth 23083 ioombl1lem4 23666 itg2monolem3 23857 itgle 23914 ibladdlem 23924 plyaddlem1 24307 coeaddlem 24343 o1cxp 25050 cxp2lim 25052 cxploglim2 25054 ftalem1 25148 ftalem2 25149 chtppilim 25513 dchrisumlem3 25529 ostth2lem2 25672 ostth2lem3 25673 ostth2lem4 25674 ostth3 25676 knoppndvlem18 33020 ibladdnclem 33946 ftc1anclem5 33969 irrapxlem4 38163 irrapxlem5 38164 rexabslelem 40376 uzublem 40388 max2d 40419 climsuse 40572 limsupubuzlem 40676 limsupmnfuzlem 40690 limsupequzmptlem 40692 limsupre3uzlem 40699 liminflelimsuplem 40739 ioodvbdlimc1lem2 40879 ioodvbdlimc2lem 40881 hoidifhspdmvle 41568 |
Copyright terms: Public domain | W3C validator |