Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10952 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10952 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax2 12839 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ℝcr 10801 ℝ*cxr 10939 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: lemaxle 12858 z2ge 12861 ssfzunsnext 13230 uzsup 13511 expmulnbnd 13878 discr1 13882 rexuzre 14992 caubnd 14998 limsupgre 15118 limsupbnd2 15120 rlim3 15135 lo1bdd2 15161 o1lo1 15174 rlimclim1 15182 lo1mul 15265 rlimno1 15293 cvgrat 15523 ruclem10 15876 bitsfzo 16070 1arith 16556 evth 24028 ioombl1lem4 24630 itg2monolem3 24822 itgle 24879 ibladdlem 24889 plyaddlem1 25279 coeaddlem 25315 o1cxp 26029 cxp2lim 26031 cxploglim2 26033 ftalem1 26127 ftalem2 26128 chtppilim 26528 dchrisumlem3 26544 ostth2lem2 26687 ostth2lem3 26688 ostth2lem4 26689 ostth3 26691 knoppndvlem18 34636 ibladdnclem 35760 ftc1anclem5 35781 irrapxlem4 40563 irrapxlem5 40564 rexabslelem 42848 uzublem 42860 max2d 42888 climsuse 43039 limsupubuzlem 43143 limsupmnfuzlem 43157 limsupequzmptlem 43159 limsupre3uzlem 43166 liminflelimsuplem 43206 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 hoidifhspdmvle 44048 |
Copyright terms: Public domain | W3C validator |