| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11180 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11180 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmax2 13096 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ℝcr 11027 ℝ*cxr 11167 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: lemaxle 13115 z2ge 13118 ssfzunsnext 13490 uzsup 13785 expmulnbnd 14160 discr1 14164 rexuzre 15278 caubnd 15284 limsupgre 15406 limsupbnd2 15408 rlim3 15423 lo1bdd2 15449 o1lo1 15462 rlimclim1 15470 lo1mul 15553 rlimno1 15579 cvgrat 15808 ruclem10 16166 bitsfzo 16364 1arith 16857 evth 24874 ioombl1lem4 25478 itg2monolem3 25669 itgle 25727 ibladdlem 25737 plyaddlem1 26134 coeaddlem 26170 o1cxp 26901 cxp2lim 26903 cxploglim2 26905 ftalem1 26999 ftalem2 27000 chtppilim 27402 dchrisumlem3 27418 ostth2lem2 27561 ostth2lem3 27562 ostth2lem4 27563 ostth3 27565 knoppndvlem18 36502 ibladdnclem 37655 ftc1anclem5 37676 irrapxlem4 42798 irrapxlem5 42799 rexabslelem 45398 uzublem 45410 max2d 45438 climsuse 45590 limsupubuzlem 45694 limsupmnfuzlem 45708 limsupequzmptlem 45710 limsupre3uzlem 45717 liminflelimsuplem 45757 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 hoidifhspdmvle 46602 |
| Copyright terms: Public domain | W3C validator |