Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > max2 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10730 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10730 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax2 12615 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 598 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ifcif 4423 class class class wbr 5035 ℝcr 10579 ℝ*cxr 10717 ≤ cle 10719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 |
This theorem is referenced by: lemaxle 12634 z2ge 12637 ssfzunsnext 13006 uzsup 13285 expmulnbnd 13651 discr1 13655 rexuzre 14765 caubnd 14771 limsupgre 14891 limsupbnd2 14893 rlim3 14908 lo1bdd2 14934 o1lo1 14947 rlimclim1 14955 lo1mul 15037 rlimno1 15063 cvgrat 15292 ruclem10 15645 bitsfzo 15839 1arith 16323 evth 23665 ioombl1lem4 24266 itg2monolem3 24457 itgle 24514 ibladdlem 24524 plyaddlem1 24914 coeaddlem 24950 o1cxp 25664 cxp2lim 25666 cxploglim2 25668 ftalem1 25762 ftalem2 25763 chtppilim 26163 dchrisumlem3 26179 ostth2lem2 26322 ostth2lem3 26323 ostth2lem4 26324 ostth3 26326 knoppndvlem18 34284 ibladdnclem 35419 ftc1anclem5 35440 irrapxlem4 40167 irrapxlem5 40168 rexabslelem 42449 uzublem 42461 max2d 42491 climsuse 42644 limsupubuzlem 42748 limsupmnfuzlem 42762 limsupequzmptlem 42764 limsupre3uzlem 42771 liminflelimsuplem 42811 ioodvbdlimc1lem2 42968 ioodvbdlimc2lem 42970 hoidifhspdmvle 43653 |
Copyright terms: Public domain | W3C validator |