Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmlin Structured version   Visualization version   GIF version

Theorem mgmhmlin 42651
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmlin.b 𝐵 = (Base‘𝑆)
mgmhmlin.p + = (+g𝑆)
mgmhmlin.q = (+g𝑇)
Assertion
Ref Expression
mgmhmlin ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mgmhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmlin.b . . . 4 𝐵 = (Base‘𝑆)
2 eqid 2825 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 mgmhmlin.p . . . 4 + = (+g𝑆)
4 mgmhmlin.q . . . 4 = (+g𝑇)
51, 2, 3, 4ismgmhm 42648 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
6 fvoveq1 6933 . . . . . . 7 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
7 fveq2 6437 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87oveq1d 6925 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
96, 8eqeq12d 2840 . . . . . 6 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
10 oveq2 6918 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1110fveq2d 6441 . . . . . . 7 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
12 fveq2 6437 . . . . . . . 8 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1312oveq2d 6926 . . . . . . 7 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1411, 13eqeq12d 2840 . . . . . 6 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
159, 14rspc2v 3539 . . . . 5 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1615com12 32 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1716ad2antll 720 . . 3 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
185, 17sylbi 209 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
19183impib 1148 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wf 6123  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  Mgmcmgm 17600   MgmHom cmgmhm 42642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-map 8129  df-mgmhm 42644
This theorem is referenced by:  mgmhmf1o  42652  resmgmhm  42663  resmgmhm2  42664  resmgmhm2b  42665  mgmhmco  42666  mgmhmima  42667  mgmhmeql  42668
  Copyright terms: Public domain W3C validator