Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmlin Structured version   Visualization version   GIF version

Theorem mgmhmlin 45680
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmlin.b 𝐵 = (Base‘𝑆)
mgmhmlin.p + = (+g𝑆)
mgmhmlin.q = (+g𝑇)
Assertion
Ref Expression
mgmhmlin ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mgmhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmlin.b . . . 4 𝐵 = (Base‘𝑆)
2 eqid 2736 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 mgmhmlin.p . . . 4 + = (+g𝑆)
4 mgmhmlin.q . . . 4 = (+g𝑇)
51, 2, 3, 4ismgmhm 45677 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
6 fvoveq1 7352 . . . . . . 7 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
7 fveq2 6819 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87oveq1d 7344 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
96, 8eqeq12d 2752 . . . . . 6 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
10 oveq2 7337 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1110fveq2d 6823 . . . . . . 7 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
12 fveq2 6819 . . . . . . . 8 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1312oveq2d 7345 . . . . . . 7 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1411, 13eqeq12d 2752 . . . . . 6 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
159, 14rspc2v 3579 . . . . 5 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1615com12 32 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1716ad2antll 726 . . 3 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
185, 17sylbi 216 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
19183impib 1115 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wf 6469  cfv 6473  (class class class)co 7329  Basecbs 17001  +gcplusg 17051  Mgmcmgm 18413   MgmHom cmgmhm 45671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-map 8680  df-mgmhm 45673
This theorem is referenced by:  mgmhmf1o  45681  resmgmhm  45692  resmgmhm2  45693  resmgmhm2b  45694  mgmhmco  45695  mgmhmima  45696  mgmhmeql  45697
  Copyright terms: Public domain W3C validator