MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmlin Structured version   Visualization version   GIF version

Theorem mgmhmlin 18609
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmlin.b 𝐵 = (Base‘𝑆)
mgmhmlin.p + = (+g𝑆)
mgmhmlin.q = (+g𝑇)
Assertion
Ref Expression
mgmhmlin ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mgmhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmlin.b . . . 4 𝐵 = (Base‘𝑆)
2 eqid 2733 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 mgmhmlin.p . . . 4 + = (+g𝑆)
4 mgmhmlin.q . . . 4 = (+g𝑇)
51, 2, 3, 4ismgmhm 18606 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
6 fvoveq1 7375 . . . . . . 7 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
7 fveq2 6828 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87oveq1d 7367 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
96, 8eqeq12d 2749 . . . . . 6 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
10 oveq2 7360 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1110fveq2d 6832 . . . . . . 7 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
12 fveq2 6828 . . . . . . . 8 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1312oveq2d 7368 . . . . . . 7 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1411, 13eqeq12d 2749 . . . . . 6 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
159, 14rspc2v 3584 . . . . 5 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1615com12 32 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1716ad2antll 729 . . 3 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
185, 17sylbi 217 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
19183impib 1116 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Mgmcmgm 18548   MgmHom cmgmhm 18600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-mgmhm 18602
This theorem is referenced by:  mgmhmf1o  18610  resmgmhm  18621  resmgmhm2  18622  resmgmhm2b  18623  mgmhmco  18624  mgmhmima  18625  mgmhmeql  18626
  Copyright terms: Public domain W3C validator