MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmfmhm Structured version   Visualization version   GIF version

Theorem mhmfmhm 18973
Description: The function fulfilling the conditions of mhmmnd 18972 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
Assertion
Ref Expression
mhmfmhm (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . 2 (𝜑𝐺 ∈ Mnd)
2 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
4 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
5 ghmgrp.p . . 3 + = (+g𝐺)
6 ghmgrp.q . . 3 = (+g𝐻)
7 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
82, 3, 4, 5, 6, 7, 1mhmmnd 18972 . 2 (𝜑𝐻 ∈ Mnd)
9 fof 6730 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . . 3 (𝜑𝐹:𝑋𝑌)
1123expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1211ralrimivva 3175 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
13 eqid 2731 . . . 4 (0g𝐺) = (0g𝐺)
142, 3, 4, 5, 6, 7, 1, 13mhmid 18971 . . 3 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
1510, 12, 143jca 1128 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻)))
16 eqid 2731 . . 3 (0g𝐻) = (0g𝐻)
173, 4, 5, 6, 13, 16ismhm 18688 . 2 (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻))))
181, 8, 15, 17syl21anbrc 1345 1 (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wf 6472  ontowfo 6474  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Mndcmnd 18637   MndHom cmhm 18684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator