| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmfmhm | Structured version Visualization version GIF version | ||
| Description: The function fulfilling the conditions of mhmmnd 19003 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmgrp.p | ⊢ + = (+g‘𝐺) |
| ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Ref | Expression |
|---|---|
| mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 19003 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 9 | fof 6775 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 3181 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 13 | eqid 2730 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 19002 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 15 | 10, 12, 14 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
| 16 | eqid 2730 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 3, 4, 5, 6, 13, 16 | ismhm 18719 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
| 18 | 1, 8, 15, 17 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |