MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmfmhm Structured version   Visualization version   GIF version

Theorem mhmfmhm 19096
Description: The function fulfilling the conditions of mhmmnd 19095 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
Assertion
Ref Expression
mhmfmhm (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . 2 (𝜑𝐺 ∈ Mnd)
2 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
4 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
5 ghmgrp.p . . 3 + = (+g𝐺)
6 ghmgrp.q . . 3 = (+g𝐻)
7 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
82, 3, 4, 5, 6, 7, 1mhmmnd 19095 . 2 (𝜑𝐻 ∈ Mnd)
9 fof 6821 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . . 3 (𝜑𝐹:𝑋𝑌)
1123expb 1119 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1211ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
13 eqid 2735 . . . 4 (0g𝐺) = (0g𝐺)
142, 3, 4, 5, 6, 7, 1, 13mhmid 19094 . . 3 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
1510, 12, 143jca 1127 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻)))
16 eqid 2735 . . 3 (0g𝐻) = (0g𝐻)
173, 4, 5, 6, 13, 16ismhm 18811 . 2 (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻))))
181, 8, 15, 17syl21anbrc 1343 1 (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760   MndHom cmhm 18807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator