Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhmfmhm | Structured version Visualization version GIF version |
Description: The function fulfilling the conditions of mhmmnd 18612 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmgrp.p | ⊢ + = (+g‘𝐺) |
ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Ref | Expression |
---|---|
mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 18612 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
9 | fof 6672 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
11 | 2 | 3expb 1118 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
12 | 11 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
13 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 18611 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
15 | 10, 12, 14 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
16 | eqid 2738 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
17 | 3, 4, 5, 6, 13, 16 | ismhm 18347 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
18 | 1, 8, 15, 17 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 MndHom cmhm 18343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |