MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmfmhm Structured version   Visualization version   GIF version

Theorem mhmfmhm 18698
Description: The function fulfilling the conditions of mhmmnd 18697 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
Assertion
Ref Expression
mhmfmhm (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . 2 (𝜑𝐺 ∈ Mnd)
2 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
4 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
5 ghmgrp.p . . 3 + = (+g𝐺)
6 ghmgrp.q . . 3 = (+g𝐻)
7 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
82, 3, 4, 5, 6, 7, 1mhmmnd 18697 . 2 (𝜑𝐻 ∈ Mnd)
9 fof 6688 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . . 3 (𝜑𝐹:𝑋𝑌)
1123expb 1119 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1211ralrimivva 3123 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
13 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
142, 3, 4, 5, 6, 7, 1, 13mhmid 18696 . . 3 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
1510, 12, 143jca 1127 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻)))
16 eqid 2738 . . 3 (0g𝐻) = (0g𝐻)
173, 4, 5, 6, 13, 16ismhm 18432 . 2 (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻))))
181, 8, 15, 17syl21anbrc 1343 1 (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385   MndHom cmhm 18428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator