| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmfmhm | Structured version Visualization version GIF version | ||
| Description: The function fulfilling the conditions of mhmmnd 18985 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmgrp.p | ⊢ + = (+g‘𝐺) |
| ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Ref | Expression |
|---|---|
| mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 18985 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 9 | fof 6743 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 3176 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 13 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 18984 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 15 | 10, 12, 14 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
| 16 | eqid 2733 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 3, 4, 5, 6, 13, 16 | ismhm 18701 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
| 18 | 1, 8, 15, 17 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 0gc0g 17350 Mndcmnd 18650 MndHom cmhm 18697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |