MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpocurryvald Structured version   Visualization version   GIF version

Theorem mpocurryvald 8276
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpocurryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpocurryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpocurryd.n (𝜑𝑌 ≠ ∅)
mpocurryvald.y (𝜑𝑌𝑊)
mpocurryvald.a (𝜑𝐴𝑋)
Assertion
Ref Expression
mpocurryvald (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpocurryvald
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mpocurryd.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 mpocurryd.c . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpocurryd.n . . . 4 (𝜑𝑌 ≠ ∅)
41, 2, 3mpocurryd 8275 . . 3 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
5 nfcv 2891 . . . 4 𝑎(𝑦𝑌𝐶)
6 nfcv 2891 . . . . 5 𝑥𝑌
7 nfcsb1v 3914 . . . . 5 𝑥𝑎 / 𝑥𝐶
86, 7nfmpt 5256 . . . 4 𝑥(𝑦𝑌𝑎 / 𝑥𝐶)
9 csbeq1a 3903 . . . . 5 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
109mpteq2dv 5251 . . . 4 (𝑥 = 𝑎 → (𝑦𝑌𝐶) = (𝑦𝑌𝑎 / 𝑥𝐶))
115, 8, 10cbvmpt 5260 . . 3 (𝑥𝑋 ↦ (𝑦𝑌𝐶)) = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶))
124, 11eqtrdi 2781 . 2 (𝜑 → curry 𝐹 = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶)))
13 csbeq1 3892 . . . 4 (𝑎 = 𝐴𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1413adantl 480 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1514mpteq2dv 5251 . 2 ((𝜑𝑎 = 𝐴) → (𝑦𝑌𝑎 / 𝑥𝐶) = (𝑦𝑌𝐴 / 𝑥𝐶))
16 mpocurryvald.a . 2 (𝜑𝐴𝑋)
17 mpocurryvald.y . . 3 (𝜑𝑌𝑊)
1817mptexd 7236 . 2 (𝜑 → (𝑦𝑌𝐴 / 𝑥𝐶) ∈ V)
1912, 15, 16, 18fvmptd 7011 1 (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  Vcvv 3461  csb 3889  c0 4322  cmpt 5232  cfv 6549  cmpo 7421  curry ccur 8271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-cur 8273
This theorem is referenced by:  fvmpocurryd  8277  pmatcollpw3lem  22729  logbmpt  26765
  Copyright terms: Public domain W3C validator