| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpocurryvald | Structured version Visualization version GIF version | ||
| Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
| Ref | Expression |
|---|---|
| mpocurryd.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
| mpocurryd.c | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) |
| mpocurryd.n | ⊢ (𝜑 → 𝑌 ≠ ∅) |
| mpocurryvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| mpocurryvald.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| mpocurryvald | ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpocurryd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 2 | mpocurryd.c | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) | |
| 3 | mpocurryd.n | . . . 4 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
| 4 | 1, 2, 3 | mpocurryd 8257 | . . 3 ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
| 5 | nfcv 2893 | . . . 4 ⊢ Ⅎ𝑎(𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 6 | nfcv 2893 | . . . . 5 ⊢ Ⅎ𝑥𝑌 | |
| 7 | nfcsb1v 3894 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 | |
| 8 | 6, 7 | nfmpt 5213 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) |
| 9 | csbeq1a 3884 | . . . . 5 ⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | |
| 10 | 9 | mpteq2dv 5209 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
| 11 | 5, 8, 10 | cbvmpt 5217 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
| 12 | 4, 11 | eqtrdi 2781 | . 2 ⊢ (𝜑 → curry 𝐹 = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶))) |
| 13 | csbeq1 3873 | . . . 4 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
| 15 | 14 | mpteq2dv 5209 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
| 16 | mpocurryvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 17 | mpocurryvald.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 18 | 17 | mptexd 7205 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶) ∈ V) |
| 19 | 12, 15, 16, 18 | fvmptd 6982 | 1 ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 Vcvv 3455 ⦋csb 3870 ∅c0 4304 ↦ cmpt 5196 ‘cfv 6519 ∈ cmpo 7396 curry ccur 8253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-cur 8255 |
| This theorem is referenced by: fvmpocurryd 8259 pmatcollpw3lem 22676 logbmpt 26705 |
| Copyright terms: Public domain | W3C validator |