MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpocurryvald Structured version   Visualization version   GIF version

Theorem mpocurryvald 8200
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpocurryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpocurryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpocurryd.n (𝜑𝑌 ≠ ∅)
mpocurryvald.y (𝜑𝑌𝑊)
mpocurryvald.a (𝜑𝐴𝑋)
Assertion
Ref Expression
mpocurryvald (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpocurryvald
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mpocurryd.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 mpocurryd.c . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpocurryd.n . . . 4 (𝜑𝑌 ≠ ∅)
41, 2, 3mpocurryd 8199 . . 3 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
5 nfcv 2894 . . . 4 𝑎(𝑦𝑌𝐶)
6 nfcv 2894 . . . . 5 𝑥𝑌
7 nfcsb1v 3869 . . . . 5 𝑥𝑎 / 𝑥𝐶
86, 7nfmpt 5187 . . . 4 𝑥(𝑦𝑌𝑎 / 𝑥𝐶)
9 csbeq1a 3859 . . . . 5 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
109mpteq2dv 5183 . . . 4 (𝑥 = 𝑎 → (𝑦𝑌𝐶) = (𝑦𝑌𝑎 / 𝑥𝐶))
115, 8, 10cbvmpt 5191 . . 3 (𝑥𝑋 ↦ (𝑦𝑌𝐶)) = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶))
124, 11eqtrdi 2782 . 2 (𝜑 → curry 𝐹 = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶)))
13 csbeq1 3848 . . . 4 (𝑎 = 𝐴𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1413adantl 481 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1514mpteq2dv 5183 . 2 ((𝜑𝑎 = 𝐴) → (𝑦𝑌𝑎 / 𝑥𝐶) = (𝑦𝑌𝐴 / 𝑥𝐶))
16 mpocurryvald.a . 2 (𝜑𝐴𝑋)
17 mpocurryvald.y . . 3 (𝜑𝑌𝑊)
1817mptexd 7158 . 2 (𝜑 → (𝑦𝑌𝐴 / 𝑥𝐶) ∈ V)
1912, 15, 16, 18fvmptd 6936 1 (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  csb 3845  c0 4280  cmpt 5170  cfv 6481  cmpo 7348  curry ccur 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cur 8197
This theorem is referenced by:  fvmpocurryd  8201  pmatcollpw3lem  22698  logbmpt  26725
  Copyright terms: Public domain W3C validator