![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpocurryvald | Structured version Visualization version GIF version |
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
Ref | Expression |
---|---|
mpocurryd.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
mpocurryd.c | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) |
mpocurryd.n | ⊢ (𝜑 → 𝑌 ≠ ∅) |
mpocurryvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
mpocurryvald.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
mpocurryvald | ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpocurryd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
2 | mpocurryd.c | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) | |
3 | mpocurryd.n | . . . 4 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
4 | 1, 2, 3 | mpocurryd 8302 | . . 3 ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
5 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑎(𝑦 ∈ 𝑌 ↦ 𝐶) | |
6 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑌 | |
7 | nfcsb1v 3936 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 | |
8 | 6, 7 | nfmpt 5258 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) |
9 | csbeq1a 3925 | . . . . 5 ⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | |
10 | 9 | mpteq2dv 5253 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
11 | 5, 8, 10 | cbvmpt 5262 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
12 | 4, 11 | eqtrdi 2793 | . 2 ⊢ (𝜑 → curry 𝐹 = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶))) |
13 | csbeq1 3914 | . . . 4 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
15 | 14 | mpteq2dv 5253 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
16 | mpocurryvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
17 | mpocurryvald.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
18 | 17 | mptexd 7251 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶) ∈ V) |
19 | 12, 15, 16, 18 | fvmptd 7030 | 1 ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3481 ⦋csb 3911 ∅c0 4342 ↦ cmpt 5234 ‘cfv 6569 ∈ cmpo 7440 curry ccur 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-cur 8300 |
This theorem is referenced by: fvmpocurryd 8304 pmatcollpw3lem 22814 logbmpt 26857 |
Copyright terms: Public domain | W3C validator |