MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpocurryvald Structured version   Visualization version   GIF version

Theorem mpocurryvald 8303
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpocurryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpocurryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpocurryd.n (𝜑𝑌 ≠ ∅)
mpocurryvald.y (𝜑𝑌𝑊)
mpocurryvald.a (𝜑𝐴𝑋)
Assertion
Ref Expression
mpocurryvald (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpocurryvald
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mpocurryd.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 mpocurryd.c . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpocurryd.n . . . 4 (𝜑𝑌 ≠ ∅)
41, 2, 3mpocurryd 8302 . . 3 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
5 nfcv 2905 . . . 4 𝑎(𝑦𝑌𝐶)
6 nfcv 2905 . . . . 5 𝑥𝑌
7 nfcsb1v 3936 . . . . 5 𝑥𝑎 / 𝑥𝐶
86, 7nfmpt 5258 . . . 4 𝑥(𝑦𝑌𝑎 / 𝑥𝐶)
9 csbeq1a 3925 . . . . 5 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
109mpteq2dv 5253 . . . 4 (𝑥 = 𝑎 → (𝑦𝑌𝐶) = (𝑦𝑌𝑎 / 𝑥𝐶))
115, 8, 10cbvmpt 5262 . . 3 (𝑥𝑋 ↦ (𝑦𝑌𝐶)) = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶))
124, 11eqtrdi 2793 . 2 (𝜑 → curry 𝐹 = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶)))
13 csbeq1 3914 . . . 4 (𝑎 = 𝐴𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1413adantl 481 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1514mpteq2dv 5253 . 2 ((𝜑𝑎 = 𝐴) → (𝑦𝑌𝑎 / 𝑥𝐶) = (𝑦𝑌𝐴 / 𝑥𝐶))
16 mpocurryvald.a . 2 (𝜑𝐴𝑋)
17 mpocurryvald.y . . 3 (𝜑𝑌𝑊)
1817mptexd 7251 . 2 (𝜑 → (𝑦𝑌𝐴 / 𝑥𝐶) ∈ V)
1912, 15, 16, 18fvmptd 7030 1 (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940  wral 3061  Vcvv 3481  csb 3911  c0 4342  cmpt 5234  cfv 6569  cmpo 7440  curry ccur 8298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-cur 8300
This theorem is referenced by:  fvmpocurryd  8304  pmatcollpw3lem  22814  logbmpt  26857
  Copyright terms: Public domain W3C validator