Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpocurryvald | Structured version Visualization version GIF version |
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
Ref | Expression |
---|---|
mpocurryd.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
mpocurryd.c | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) |
mpocurryd.n | ⊢ (𝜑 → 𝑌 ≠ ∅) |
mpocurryvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
mpocurryvald.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
mpocurryvald | ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpocurryd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
2 | mpocurryd.c | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) | |
3 | mpocurryd.n | . . . 4 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
4 | 1, 2, 3 | mpocurryd 8056 | . . 3 ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
5 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑎(𝑦 ∈ 𝑌 ↦ 𝐶) | |
6 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑌 | |
7 | nfcsb1v 3853 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 | |
8 | 6, 7 | nfmpt 5177 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) |
9 | csbeq1a 3842 | . . . . 5 ⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | |
10 | 9 | mpteq2dv 5172 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
11 | 5, 8, 10 | cbvmpt 5181 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
12 | 4, 11 | eqtrdi 2795 | . 2 ⊢ (𝜑 → curry 𝐹 = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶))) |
13 | csbeq1 3831 | . . . 4 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
15 | 14 | mpteq2dv 5172 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
16 | mpocurryvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
17 | mpocurryvald.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
18 | 17 | mptexd 7082 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶) ∈ V) |
19 | 12, 15, 16, 18 | fvmptd 6864 | 1 ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ⦋csb 3828 ∅c0 4253 ↦ cmpt 5153 ‘cfv 6418 ∈ cmpo 7257 curry ccur 8052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cur 8054 |
This theorem is referenced by: fvmpocurryd 8058 pmatcollpw3lem 21840 logbmpt 25843 |
Copyright terms: Public domain | W3C validator |