MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpocurryvald Structured version   Visualization version   GIF version

Theorem mpocurryvald 8267
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpocurryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpocurryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpocurryd.n (𝜑𝑌 ≠ ∅)
mpocurryvald.y (𝜑𝑌𝑊)
mpocurryvald.a (𝜑𝐴𝑋)
Assertion
Ref Expression
mpocurryvald (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpocurryvald
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mpocurryd.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 mpocurryd.c . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpocurryd.n . . . 4 (𝜑𝑌 ≠ ∅)
41, 2, 3mpocurryd 8266 . . 3 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
5 nfcv 2898 . . . 4 𝑎(𝑦𝑌𝐶)
6 nfcv 2898 . . . . 5 𝑥𝑌
7 nfcsb1v 3914 . . . . 5 𝑥𝑎 / 𝑥𝐶
86, 7nfmpt 5249 . . . 4 𝑥(𝑦𝑌𝑎 / 𝑥𝐶)
9 csbeq1a 3903 . . . . 5 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
109mpteq2dv 5244 . . . 4 (𝑥 = 𝑎 → (𝑦𝑌𝐶) = (𝑦𝑌𝑎 / 𝑥𝐶))
115, 8, 10cbvmpt 5253 . . 3 (𝑥𝑋 ↦ (𝑦𝑌𝐶)) = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶))
124, 11eqtrdi 2783 . 2 (𝜑 → curry 𝐹 = (𝑎𝑋 ↦ (𝑦𝑌𝑎 / 𝑥𝐶)))
13 csbeq1 3892 . . . 4 (𝑎 = 𝐴𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1413adantl 481 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
1514mpteq2dv 5244 . 2 ((𝜑𝑎 = 𝐴) → (𝑦𝑌𝑎 / 𝑥𝐶) = (𝑦𝑌𝐴 / 𝑥𝐶))
16 mpocurryvald.a . 2 (𝜑𝐴𝑋)
17 mpocurryvald.y . . 3 (𝜑𝑌𝑊)
1817mptexd 7230 . 2 (𝜑 → (𝑦𝑌𝐴 / 𝑥𝐶) ∈ V)
1912, 15, 16, 18fvmptd 7006 1 (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  wral 3056  Vcvv 3469  csb 3889  c0 4318  cmpt 5225  cfv 6542  cmpo 7416  curry ccur 8262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-cur 8264
This theorem is referenced by:  fvmpocurryd  8268  pmatcollpw3lem  22659  logbmpt  26694
  Copyright terms: Public domain W3C validator