Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpocurryvald | Structured version Visualization version GIF version |
Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
Ref | Expression |
---|---|
mpocurryd.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
mpocurryd.c | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) |
mpocurryd.n | ⊢ (𝜑 → 𝑌 ≠ ∅) |
mpocurryvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
mpocurryvald.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
mpocurryvald | ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpocurryd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
2 | mpocurryd.c | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) | |
3 | mpocurryd.n | . . . 4 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
4 | 1, 2, 3 | mpocurryd 8085 | . . 3 ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
5 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑎(𝑦 ∈ 𝑌 ↦ 𝐶) | |
6 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑌 | |
7 | nfcsb1v 3857 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 | |
8 | 6, 7 | nfmpt 5181 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) |
9 | csbeq1a 3846 | . . . . 5 ⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | |
10 | 9 | mpteq2dv 5176 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
11 | 5, 8, 10 | cbvmpt 5185 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
12 | 4, 11 | eqtrdi 2794 | . 2 ⊢ (𝜑 → curry 𝐹 = (𝑎 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶))) |
13 | csbeq1 3835 | . . . 4 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
15 | 14 | mpteq2dv 5176 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑦 ∈ 𝑌 ↦ ⦋𝑎 / 𝑥⦌𝐶) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
16 | mpocurryvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
17 | mpocurryvald.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
18 | 17 | mptexd 7100 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶) ∈ V) |
19 | 12, 15, 16, 18 | fvmptd 6882 | 1 ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ⦋csb 3832 ∅c0 4256 ↦ cmpt 5157 ‘cfv 6433 ∈ cmpo 7277 curry ccur 8081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-cur 8083 |
This theorem is referenced by: fvmpocurryd 8087 pmatcollpw3lem 21932 logbmpt 25938 |
Copyright terms: Public domain | W3C validator |