MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabovdOLD Structured version   Visualization version   GIF version

Theorem mptmpoopabovdOLD 8125
Description: Obsolete version of mptmpoopabovd 8123 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mptmpoopabbrdOLD.g (𝜑𝐺𝑊)
mptmpoopabbrdOLD.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrdOLD.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrdOLD.v (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
mptmpoopabbrdOLD.r ((𝜑𝑓(𝐷𝐺)) → 𝜓)
mptmpoopabovdOLD.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabovdOLD (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑔   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝐶,𝑎,𝑏,𝑔
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜓(𝑓,𝑔,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐶(𝑓,)   𝐷(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑉(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabovdOLD
StepHypRef Expression
1 mptmpoopabbrdOLD.g . 2 (𝜑𝐺𝑊)
2 mptmpoopabbrdOLD.x . 2 (𝜑𝑋 ∈ (𝐴𝐺))
3 mptmpoopabbrdOLD.y . 2 (𝜑𝑌 ∈ (𝐵𝐺))
4 mptmpoopabbrdOLD.v . 2 (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
5 mptmpoopabbrdOLD.r . 2 ((𝜑𝑓(𝐷𝐺)) → 𝜓)
6 oveq12 7457 . . 3 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑎(𝐶𝐺)𝑏) = (𝑋(𝐶𝐺)𝑌))
76breqd 5177 . 2 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑓(𝑎(𝐶𝐺)𝑏)𝑓(𝑋(𝐶𝐺)𝑌)))
8 fveq2 6920 . . . 4 (𝑔 = 𝐺 → (𝐶𝑔) = (𝐶𝐺))
98oveqd 7465 . . 3 (𝑔 = 𝐺 → (𝑎(𝐶𝑔)𝑏) = (𝑎(𝐶𝐺)𝑏))
109breqd 5177 . 2 (𝑔 = 𝐺 → (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝑎(𝐶𝐺)𝑏)))
11 mptmpoopabovdOLD.m . 2 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
121, 2, 3, 4, 5, 7, 10, 11mptmpoopabbrdOLDOLD 8124 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  {copab 5228  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  wksonproplemOLD  29741
  Copyright terms: Public domain W3C validator