| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptmpoopabovdOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mptmpoopabovd 8061 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mptmpoopabbrdOLD.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| mptmpoopabbrdOLD.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
| mptmpoopabbrdOLD.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
| mptmpoopabbrdOLD.v | ⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) |
| mptmpoopabbrdOLD.r | ⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) |
| mptmpoopabovdOLD.m | ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
| Ref | Expression |
|---|---|
| mptmpoopabovdOLD | ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrdOLD.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | mptmpoopabbrdOLD.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) | |
| 3 | mptmpoopabbrdOLD.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) | |
| 4 | mptmpoopabbrdOLD.v | . 2 ⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) | |
| 5 | mptmpoopabbrdOLD.r | . 2 ⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) | |
| 6 | oveq12 7396 | . . 3 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑎(𝐶‘𝐺)𝑏) = (𝑋(𝐶‘𝐺)𝑌)) | |
| 7 | 6 | breqd 5118 | . 2 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ ↔ 𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ)) |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐶‘𝑔) = (𝐶‘𝐺)) | |
| 9 | 8 | oveqd 7404 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑎(𝐶‘𝑔)𝑏) = (𝑎(𝐶‘𝐺)𝑏)) |
| 10 | 9 | breqd 5118 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ↔ 𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ)) |
| 11 | mptmpoopabovdOLD.m | . 2 ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) | |
| 12 | 1, 2, 3, 4, 5, 7, 10, 11 | mptmpoopabbrdOLDOLD 8062 | 1 ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: wksonproplemOLD 29633 |
| Copyright terms: Public domain | W3C validator |