MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Visualization version   GIF version

Theorem gsumwspan 18485
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b 𝐵 = (Base‘𝑀)
gsumwspan.k 𝐾 = (mrCls‘(SubMnd‘𝑀))
Assertion
Ref Expression
gsumwspan ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐵   𝑤,𝑀   𝑤,𝐾

Proof of Theorem gsumwspan
Dummy variables 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6 𝐵 = (Base‘𝑀)
21submacs 18465 . . . . 5 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (ACS‘𝐵))
32acsmred 17365 . . . 4 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
43adantr 481 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
5 simpr 485 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐺)
65s1cld 14308 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ⟨“𝑥”⟩ ∈ Word 𝐺)
7 ssel2 3916 . . . . . . . . . 10 ((𝐺𝐵𝑥𝐺) → 𝑥𝐵)
87adantll 711 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐵)
91gsumws1 18476 . . . . . . . . 9 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
108, 9syl 17 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
1110eqcomd 2744 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 = (𝑀 Σg ⟨“𝑥”⟩))
12 oveq2 7283 . . . . . . . 8 (𝑤 = ⟨“𝑥”⟩ → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
1312rspceeqv 3575 . . . . . . 7 ((⟨“𝑥”⟩ ∈ Word 𝐺𝑥 = (𝑀 Σg ⟨“𝑥”⟩)) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
146, 11, 13syl2anc 584 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
15 eqid 2738 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))
1615elrnmpt 5865 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤)))
1716elv 3438 . . . . . 6 (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
1814, 17sylibr 233 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1918ex 413 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑥𝐺𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
2019ssrdv 3927 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
21 gsumwspan.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubMnd‘𝑀))
2221mrccl 17320 . . . . . . . . 9 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
233, 22sylan 580 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2421mrcssid 17326 . . . . . . . . . . 11 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
253, 24sylan 580 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
26 sswrd 14225 . . . . . . . . . 10 (𝐺 ⊆ (𝐾𝐺) → Word 𝐺 ⊆ Word (𝐾𝐺))
2725, 26syl 17 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → Word 𝐺 ⊆ Word (𝐾𝐺))
2827sselda 3921 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → 𝑤 ∈ Word (𝐾𝐺))
29 gsumwsubmcl 18475 . . . . . . . 8 (((𝐾𝐺) ∈ (SubMnd‘𝑀) ∧ 𝑤 ∈ Word (𝐾𝐺)) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3023, 28, 29syl2an2r 682 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3130fmpttd 6989 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺))
3231frnd 6608 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
333, 21mrcssvd 17332 . . . . . 6 (𝑀 ∈ Mnd → (𝐾𝐺) ⊆ 𝐵)
3433adantr 481 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ 𝐵)
3532, 34sstrd 3931 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵)
36 wrd0 14242 . . . . . 6 ∅ ∈ Word 𝐺
37 eqid 2738 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
3837gsum0 18368 . . . . . . . 8 (𝑀 Σg ∅) = (0g𝑀)
3938eqcomi 2747 . . . . . . 7 (0g𝑀) = (𝑀 Σg ∅)
4039a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) = (𝑀 Σg ∅))
41 oveq2 7283 . . . . . . 7 (𝑤 = ∅ → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
4241rspceeqv 3575 . . . . . 6 ((∅ ∈ Word 𝐺 ∧ (0g𝑀) = (𝑀 Σg ∅)) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4336, 40, 42sylancr 587 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
44 fvex 6787 . . . . . 6 (0g𝑀) ∈ V
4515elrnmpt 5865 . . . . . 6 ((0g𝑀) ∈ V → ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤)))
4644, 45ax-mp 5 . . . . 5 ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4743, 46sylibr 233 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
48 ccatcl 14277 . . . . . . . 8 ((𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
49 simpll 764 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑀 ∈ Mnd)
50 sswrd 14225 . . . . . . . . . . . 12 (𝐺𝐵 → Word 𝐺 ⊆ Word 𝐵)
5150ad2antlr 724 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → Word 𝐺 ⊆ Word 𝐵)
52 simprl 768 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐺)
5351, 52sseldd 3922 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐵)
54 simprr 770 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐺)
5551, 54sseldd 3922 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐵)
56 eqid 2738 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
571, 56gsumccat 18480 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵𝑣 ∈ Word 𝐵) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
5849, 53, 55, 57syl3anc 1370 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
5958eqcomd 2744 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣)))
60 oveq2 7283 . . . . . . . . 9 (𝑤 = (𝑧 ++ 𝑣) → (𝑀 Σg 𝑤) = (𝑀 Σg (𝑧 ++ 𝑣)))
6160rspceeqv 3575 . . . . . . . 8 (((𝑧 ++ 𝑣) ∈ Word 𝐺 ∧ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6248, 59, 61syl2an2 683 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
63 ovex 7308 . . . . . . . 8 ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V
6415elrnmpt 5865 . . . . . . . 8 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤)))
6563, 64ax-mp 5 . . . . . . 7 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6662, 65sylibr 233 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
6766ralrimivva 3123 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
68 oveq2 7283 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑧))
6968cbvmptv 5187 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7069rneqi 5846 . . . . . . 7 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7170raleqi 3346 . . . . . 6 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
72 oveq2 7283 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
7372cbvmptv 5187 . . . . . . . . . 10 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7473rneqi 5846 . . . . . . . . 9 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7574raleqi 3346 . . . . . . . 8 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
76 eqid 2738 . . . . . . . . . 10 (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
77 oveq2 7283 . . . . . . . . . . 11 (𝑦 = (𝑀 Σg 𝑣) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝑀 Σg 𝑣)))
7877eleq1d 2823 . . . . . . . . . 10 (𝑦 = (𝑀 Σg 𝑣) → ((𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ (𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
7976, 78ralrnmptw 6970 . . . . . . . . 9 (∀𝑣 ∈ Word 𝐺(𝑀 Σg 𝑣) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
80 ovexd 7310 . . . . . . . . 9 (𝑣 ∈ Word 𝐺 → (𝑀 Σg 𝑣) ∈ V)
8179, 80mprg 3078 . . . . . . . 8 (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8275, 81bitri 274 . . . . . . 7 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8382ralbii 3092 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
84 eqid 2738 . . . . . . . 8 (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
85 oveq1 7282 . . . . . . . . . 10 (𝑥 = (𝑀 Σg 𝑧) → (𝑥(+g𝑀)(𝑀 Σg 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
8685eleq1d 2823 . . . . . . . . 9 (𝑥 = (𝑀 Σg 𝑧) → ((𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8786ralbidv 3112 . . . . . . . 8 (𝑥 = (𝑀 Σg 𝑧) → (∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8884, 87ralrnmptw 6970 . . . . . . 7 (∀𝑧 ∈ Word 𝐺(𝑀 Σg 𝑧) ∈ V → (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
89 ovexd 7310 . . . . . . 7 (𝑧 ∈ Word 𝐺 → (𝑀 Σg 𝑧) ∈ V)
9088, 89mprg 3078 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9171, 83, 903bitri 297 . . . . 5 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9267, 91sylibr 233 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
931, 37, 56issubm 18442 . . . . 5 (𝑀 ∈ Mnd → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9493adantr 481 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9535, 47, 92, 94mpbir3and 1341 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀))
9621mrcsscl 17329 . . 3 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀)) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
974, 20, 95, 96syl3anc 1370 . 2 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9897, 32eqssd 3938 1 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  Basecbs 16912  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Moorecmre 17291  mrClscmrc 17292  Mndcmnd 18385  SubMndcsubmnd 18429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431
This theorem is referenced by:  psgneldm2  19112  psgnfitr  19125
  Copyright terms: Public domain W3C validator