MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Visualization version   GIF version

Theorem gsumwspan 17999
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b 𝐵 = (Base‘𝑀)
gsumwspan.k 𝐾 = (mrCls‘(SubMnd‘𝑀))
Assertion
Ref Expression
gsumwspan ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐵   𝑤,𝑀   𝑤,𝐾

Proof of Theorem gsumwspan
Dummy variables 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6 𝐵 = (Base‘𝑀)
21submacs 17979 . . . . 5 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (ACS‘𝐵))
32acsmred 16915 . . . 4 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
43adantr 481 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
5 simpr 485 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐺)
65s1cld 13945 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ⟨“𝑥”⟩ ∈ Word 𝐺)
7 ssel2 3959 . . . . . . . . . 10 ((𝐺𝐵𝑥𝐺) → 𝑥𝐵)
87adantll 710 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐵)
91gsumws1 17990 . . . . . . . . 9 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
108, 9syl 17 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
1110eqcomd 2824 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 = (𝑀 Σg ⟨“𝑥”⟩))
12 oveq2 7153 . . . . . . . 8 (𝑤 = ⟨“𝑥”⟩ → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
1312rspceeqv 3635 . . . . . . 7 ((⟨“𝑥”⟩ ∈ Word 𝐺𝑥 = (𝑀 Σg ⟨“𝑥”⟩)) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
146, 11, 13syl2anc 584 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
15 eqid 2818 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))
1615elrnmpt 5821 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤)))
1716elv 3497 . . . . . 6 (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
1814, 17sylibr 235 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1918ex 413 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑥𝐺𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
2019ssrdv 3970 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
21 gsumwspan.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubMnd‘𝑀))
2221mrccl 16870 . . . . . . . . 9 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
233, 22sylan 580 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2421mrcssid 16876 . . . . . . . . . . 11 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
253, 24sylan 580 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
26 sswrd 13857 . . . . . . . . . 10 (𝐺 ⊆ (𝐾𝐺) → Word 𝐺 ⊆ Word (𝐾𝐺))
2725, 26syl 17 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → Word 𝐺 ⊆ Word (𝐾𝐺))
2827sselda 3964 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → 𝑤 ∈ Word (𝐾𝐺))
29 gsumwsubmcl 17989 . . . . . . . 8 (((𝐾𝐺) ∈ (SubMnd‘𝑀) ∧ 𝑤 ∈ Word (𝐾𝐺)) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3023, 28, 29syl2an2r 681 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3130fmpttd 6871 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺))
3231frnd 6514 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
333, 21mrcssvd 16882 . . . . . 6 (𝑀 ∈ Mnd → (𝐾𝐺) ⊆ 𝐵)
3433adantr 481 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ 𝐵)
3532, 34sstrd 3974 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵)
36 wrd0 13877 . . . . . 6 ∅ ∈ Word 𝐺
37 eqid 2818 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
3837gsum0 17882 . . . . . . . 8 (𝑀 Σg ∅) = (0g𝑀)
3938eqcomi 2827 . . . . . . 7 (0g𝑀) = (𝑀 Σg ∅)
4039a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) = (𝑀 Σg ∅))
41 oveq2 7153 . . . . . . 7 (𝑤 = ∅ → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
4241rspceeqv 3635 . . . . . 6 ((∅ ∈ Word 𝐺 ∧ (0g𝑀) = (𝑀 Σg ∅)) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4336, 40, 42sylancr 587 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
44 fvex 6676 . . . . . 6 (0g𝑀) ∈ V
4515elrnmpt 5821 . . . . . 6 ((0g𝑀) ∈ V → ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤)))
4644, 45ax-mp 5 . . . . 5 ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4743, 46sylibr 235 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
48 ccatcl 13914 . . . . . . . 8 ((𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
49 simpll 763 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑀 ∈ Mnd)
50 sswrd 13857 . . . . . . . . . . . 12 (𝐺𝐵 → Word 𝐺 ⊆ Word 𝐵)
5150ad2antlr 723 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → Word 𝐺 ⊆ Word 𝐵)
52 simprl 767 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐺)
5351, 52sseldd 3965 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐵)
54 simprr 769 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐺)
5551, 54sseldd 3965 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐵)
56 eqid 2818 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
571, 56gsumccat 17994 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵𝑣 ∈ Word 𝐵) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
5849, 53, 55, 57syl3anc 1363 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
5958eqcomd 2824 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣)))
60 oveq2 7153 . . . . . . . . 9 (𝑤 = (𝑧 ++ 𝑣) → (𝑀 Σg 𝑤) = (𝑀 Σg (𝑧 ++ 𝑣)))
6160rspceeqv 3635 . . . . . . . 8 (((𝑧 ++ 𝑣) ∈ Word 𝐺 ∧ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6248, 59, 61syl2an2 682 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
63 ovex 7178 . . . . . . . 8 ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V
6415elrnmpt 5821 . . . . . . . 8 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤)))
6563, 64ax-mp 5 . . . . . . 7 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6662, 65sylibr 235 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
6766ralrimivva 3188 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
68 oveq2 7153 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑧))
6968cbvmptv 5160 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7069rneqi 5800 . . . . . . 7 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7170raleqi 3411 . . . . . 6 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
72 oveq2 7153 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
7372cbvmptv 5160 . . . . . . . . . 10 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7473rneqi 5800 . . . . . . . . 9 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7574raleqi 3411 . . . . . . . 8 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
76 eqid 2818 . . . . . . . . . 10 (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
77 oveq2 7153 . . . . . . . . . . 11 (𝑦 = (𝑀 Σg 𝑣) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝑀 Σg 𝑣)))
7877eleq1d 2894 . . . . . . . . . 10 (𝑦 = (𝑀 Σg 𝑣) → ((𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ (𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
7976, 78ralrnmptw 6852 . . . . . . . . 9 (∀𝑣 ∈ Word 𝐺(𝑀 Σg 𝑣) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
80 ovexd 7180 . . . . . . . . 9 (𝑣 ∈ Word 𝐺 → (𝑀 Σg 𝑣) ∈ V)
8179, 80mprg 3149 . . . . . . . 8 (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8275, 81bitri 276 . . . . . . 7 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8382ralbii 3162 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
84 eqid 2818 . . . . . . . 8 (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
85 oveq1 7152 . . . . . . . . . 10 (𝑥 = (𝑀 Σg 𝑧) → (𝑥(+g𝑀)(𝑀 Σg 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
8685eleq1d 2894 . . . . . . . . 9 (𝑥 = (𝑀 Σg 𝑧) → ((𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8786ralbidv 3194 . . . . . . . 8 (𝑥 = (𝑀 Σg 𝑧) → (∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8884, 87ralrnmptw 6852 . . . . . . 7 (∀𝑧 ∈ Word 𝐺(𝑀 Σg 𝑧) ∈ V → (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
89 ovexd 7180 . . . . . . 7 (𝑧 ∈ Word 𝐺 → (𝑀 Σg 𝑧) ∈ V)
9088, 89mprg 3149 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9171, 83, 903bitri 298 . . . . 5 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9267, 91sylibr 235 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
931, 37, 56issubm 17956 . . . . 5 (𝑀 ∈ Mnd → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9493adantr 481 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9535, 47, 92, 94mpbir3and 1334 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀))
9621mrcsscl 16879 . . 3 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀)) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
974, 20, 95, 96syl3anc 1363 . 2 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9897, 32eqssd 3981 1 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  wss 3933  c0 4288  cmpt 5137  ran crn 5549  cfv 6348  (class class class)co 7145  Word cword 13849   ++ cconcat 13910  ⟨“cs1 13937  Basecbs 16471  +gcplusg 16553  0gc0g 16701   Σg cgsu 16702  Moorecmre 16841  mrClscmrc 16842  Mndcmnd 17899  SubMndcsubmnd 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945
This theorem is referenced by:  psgneldm2  18561  psgnfitr  18574
  Copyright terms: Public domain W3C validator