MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Visualization version   GIF version

Theorem gsumwspan 17699
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b 𝐵 = (Base‘𝑀)
gsumwspan.k 𝐾 = (mrCls‘(SubMnd‘𝑀))
Assertion
Ref Expression
gsumwspan ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐵   𝑤,𝑀   𝑤,𝐾

Proof of Theorem gsumwspan
Dummy variables 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6 𝐵 = (Base‘𝑀)
21submacs 17680 . . . . 5 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (ACS‘𝐵))
32acsmred 16631 . . . 4 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
43adantr 473 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
5 simpr 478 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐺)
65s1cld 13623 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ⟨“𝑥”⟩ ∈ Word 𝐺)
7 ssel2 3793 . . . . . . . . . 10 ((𝐺𝐵𝑥𝐺) → 𝑥𝐵)
87adantll 706 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐵)
91gsumws1 17691 . . . . . . . . 9 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
108, 9syl 17 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
1110eqcomd 2805 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 = (𝑀 Σg ⟨“𝑥”⟩))
12 oveq2 6886 . . . . . . . 8 (𝑤 = ⟨“𝑥”⟩ → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
1312rspceeqv 3515 . . . . . . 7 ((⟨“𝑥”⟩ ∈ Word 𝐺𝑥 = (𝑀 Σg ⟨“𝑥”⟩)) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
146, 11, 13syl2anc 580 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
15 vex 3388 . . . . . . 7 𝑥 ∈ V
16 eqid 2799 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))
1716elrnmpt 5576 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤)))
1815, 17ax-mp 5 . . . . . 6 (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
1914, 18sylibr 226 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
2019ex 402 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑥𝐺𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
2120ssrdv 3804 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
22 gsumwspan.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubMnd‘𝑀))
2322mrccl 16586 . . . . . . . . . 10 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
243, 23sylan 576 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2524adantr 473 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2622mrcssid 16592 . . . . . . . . . . 11 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
273, 26sylan 576 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
28 sswrd 13542 . . . . . . . . . 10 (𝐺 ⊆ (𝐾𝐺) → Word 𝐺 ⊆ Word (𝐾𝐺))
2927, 28syl 17 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → Word 𝐺 ⊆ Word (𝐾𝐺))
3029sselda 3798 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → 𝑤 ∈ Word (𝐾𝐺))
31 gsumwsubmcl 17690 . . . . . . . 8 (((𝐾𝐺) ∈ (SubMnd‘𝑀) ∧ 𝑤 ∈ Word (𝐾𝐺)) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3225, 30, 31syl2anc 580 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3332fmpttd 6611 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺))
3433frnd 6263 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
353, 22mrcssvd 16598 . . . . . 6 (𝑀 ∈ Mnd → (𝐾𝐺) ⊆ 𝐵)
3635adantr 473 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ 𝐵)
3734, 36sstrd 3808 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵)
38 wrd0 13559 . . . . . 6 ∅ ∈ Word 𝐺
39 eqid 2799 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
4039gsum0 17593 . . . . . . . 8 (𝑀 Σg ∅) = (0g𝑀)
4140eqcomi 2808 . . . . . . 7 (0g𝑀) = (𝑀 Σg ∅)
4241a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) = (𝑀 Σg ∅))
43 oveq2 6886 . . . . . . 7 (𝑤 = ∅ → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
4443rspceeqv 3515 . . . . . 6 ((∅ ∈ Word 𝐺 ∧ (0g𝑀) = (𝑀 Σg ∅)) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4538, 42, 44sylancr 582 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
46 fvex 6424 . . . . . 6 (0g𝑀) ∈ V
4716elrnmpt 5576 . . . . . 6 ((0g𝑀) ∈ V → ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤)))
4846, 47ax-mp 5 . . . . 5 ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4945, 48sylibr 226 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
50 ccatcl 13594 . . . . . . . . 9 ((𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
5150adantl 474 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
52 simpll 784 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑀 ∈ Mnd)
53 sswrd 13542 . . . . . . . . . . . 12 (𝐺𝐵 → Word 𝐺 ⊆ Word 𝐵)
5453ad2antlr 719 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → Word 𝐺 ⊆ Word 𝐵)
55 simprl 788 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐺)
5654, 55sseldd 3799 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐵)
57 simprr 790 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐺)
5854, 57sseldd 3799 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐵)
59 eqid 2799 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
601, 59gsumccat 17693 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵𝑣 ∈ Word 𝐵) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6152, 56, 58, 60syl3anc 1491 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6261eqcomd 2805 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣)))
63 oveq2 6886 . . . . . . . . 9 (𝑤 = (𝑧 ++ 𝑣) → (𝑀 Σg 𝑤) = (𝑀 Σg (𝑧 ++ 𝑣)))
6463rspceeqv 3515 . . . . . . . 8 (((𝑧 ++ 𝑣) ∈ Word 𝐺 ∧ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6551, 62, 64syl2anc 580 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
66 ovex 6910 . . . . . . . 8 ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V
6716elrnmpt 5576 . . . . . . . 8 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤)))
6866, 67ax-mp 5 . . . . . . 7 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6965, 68sylibr 226 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
7069ralrimivva 3152 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
71 oveq2 6886 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑧))
7271cbvmptv 4943 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7372rneqi 5555 . . . . . . 7 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7473raleqi 3325 . . . . . 6 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
75 oveq2 6886 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
7675cbvmptv 4943 . . . . . . . . . 10 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7776rneqi 5555 . . . . . . . . 9 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
7877raleqi 3325 . . . . . . . 8 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
79 eqid 2799 . . . . . . . . . 10 (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
80 oveq2 6886 . . . . . . . . . . 11 (𝑦 = (𝑀 Σg 𝑣) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝑀 Σg 𝑣)))
8180eleq1d 2863 . . . . . . . . . 10 (𝑦 = (𝑀 Σg 𝑣) → ((𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ (𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8279, 81ralrnmpt 6594 . . . . . . . . 9 (∀𝑣 ∈ Word 𝐺(𝑀 Σg 𝑣) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
83 ovexd 6912 . . . . . . . . 9 (𝑣 ∈ Word 𝐺 → (𝑀 Σg 𝑣) ∈ V)
8482, 83mprg 3107 . . . . . . . 8 (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8578, 84bitri 267 . . . . . . 7 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8685ralbii 3161 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
87 eqid 2799 . . . . . . . 8 (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
88 oveq1 6885 . . . . . . . . . 10 (𝑥 = (𝑀 Σg 𝑧) → (𝑥(+g𝑀)(𝑀 Σg 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
8988eleq1d 2863 . . . . . . . . 9 (𝑥 = (𝑀 Σg 𝑧) → ((𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9089ralbidv 3167 . . . . . . . 8 (𝑥 = (𝑀 Σg 𝑧) → (∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9187, 90ralrnmpt 6594 . . . . . . 7 (∀𝑧 ∈ Word 𝐺(𝑀 Σg 𝑧) ∈ V → (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
92 ovexd 6912 . . . . . . 7 (𝑧 ∈ Word 𝐺 → (𝑀 Σg 𝑧) ∈ V)
9391, 92mprg 3107 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9474, 86, 933bitri 289 . . . . 5 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9570, 94sylibr 226 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
961, 39, 59issubm 17662 . . . . 5 (𝑀 ∈ Mnd → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9796adantr 473 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
9837, 49, 95, 97mpbir3and 1443 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀))
9922mrcsscl 16595 . . 3 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀)) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1004, 21, 98, 99syl3anc 1491 . 2 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
101100, 34eqssd 3815 1 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  wss 3769  c0 4115  cmpt 4922  ran crn 5313  cfv 6101  (class class class)co 6878  Word cword 13534   ++ cconcat 13590  ⟨“cs1 13615  Basecbs 16184  +gcplusg 16267  0gc0g 16415   Σg cgsu 16416  Moorecmre 16557  mrClscmrc 16558  Mndcmnd 17609  SubMndcsubmnd 17649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-word 13535  df-concat 13591  df-s1 13616  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-0g 16417  df-gsum 16418  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651
This theorem is referenced by:  psgneldm2  18237  psgnfitr  18250
  Copyright terms: Public domain W3C validator