MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzspan Structured version   Visualization version   GIF version

Theorem cntzspan 19723
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzspan.z 𝑍 = (Cntz‘𝐺)
cntzspan.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
cntzspan.h 𝐻 = (𝐺s (𝐾𝑆))
Assertion
Ref Expression
cntzspan ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)

Proof of Theorem cntzspan
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21submacs 18701 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
32adantr 480 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
43acsmred 17562 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5 simpr 484 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍𝑆))
6 cntzspan.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
71, 6cntzssv 19207 . . . . . . 7 (𝑍𝑆) ⊆ (Base‘𝐺)
85, 7sstrdi 3948 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
91, 6cntzsubm 19217 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
108, 9syldan 591 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
11 cntzspan.k . . . . . 6 𝐾 = (mrCls‘(SubMnd‘𝐺))
1211mrcsscl 17526 . . . . 5 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍𝑆) ∧ (𝑍𝑆) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍𝑆))
134, 5, 10, 12syl3anc 1373 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍𝑆))
144, 11mrcssvd 17529 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (Base‘𝐺))
151, 6cntzrec 19215 . . . . 5 (((𝐾𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1614, 8, 15syl2anc 584 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1713, 16mpbid 232 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾𝑆)))
181, 6cntzsubm 19217 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐾𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
1914, 18syldan 591 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
2011mrcsscl 17526 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾𝑆)) ∧ (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
214, 17, 19, 20syl3anc 1373 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
2211mrccl 17517 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
234, 8, 22syl2anc 584 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
24 cntzspan.h . . . 4 𝐻 = (𝐺s (𝐾𝑆))
2524, 6submcmn2 19718 . . 3 ((𝐾𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2623, 25syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2721, 26mpbird 257 1 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  Moorecmre 17484  mrClscmrc 17485  ACScacs 17487  Mndcmnd 18608  SubMndcsubmnd 18656  Cntzccntz 19194  CMndccmn 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-cntz 19196  df-cmn 19661
This theorem is referenced by:  gsumzsplit  19806  gsumzoppg  19823  gsumpt  19841
  Copyright terms: Public domain W3C validator