MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzspan Structured version   Visualization version   GIF version

Theorem cntzspan 18967
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzspan.z 𝑍 = (Cntz‘𝐺)
cntzspan.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
cntzspan.h 𝐻 = (𝐺s (𝐾𝑆))
Assertion
Ref Expression
cntzspan ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)

Proof of Theorem cntzspan
StepHypRef Expression
1 eqid 2824 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21submacs 17994 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
32adantr 483 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
43acsmred 16930 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5 simpr 487 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍𝑆))
6 cntzspan.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
71, 6cntzssv 18461 . . . . . . 7 (𝑍𝑆) ⊆ (Base‘𝐺)
85, 7sstrdi 3982 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
91, 6cntzsubm 18469 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
108, 9syldan 593 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
11 cntzspan.k . . . . . 6 𝐾 = (mrCls‘(SubMnd‘𝐺))
1211mrcsscl 16894 . . . . 5 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍𝑆) ∧ (𝑍𝑆) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍𝑆))
134, 5, 10, 12syl3anc 1367 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍𝑆))
144, 11mrcssvd 16897 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (Base‘𝐺))
151, 6cntzrec 18467 . . . . 5 (((𝐾𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1614, 8, 15syl2anc 586 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1713, 16mpbid 234 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾𝑆)))
181, 6cntzsubm 18469 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐾𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
1914, 18syldan 593 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
2011mrcsscl 16894 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾𝑆)) ∧ (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
214, 17, 19, 20syl3anc 1367 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
2211mrccl 16885 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
234, 8, 22syl2anc 586 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
24 cntzspan.h . . . 4 𝐻 = (𝐺s (𝐾𝑆))
2524, 6submcmn2 18962 . . 3 ((𝐾𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2623, 25syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2721, 26mpbird 259 1 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wss 3939  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  Moorecmre 16856  mrClscmrc 16857  ACScacs 16859  Mndcmnd 17914  SubMndcsubmnd 17958  Cntzccntz 18448  CMndccmn 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-cntz 18450  df-cmn 18911
This theorem is referenced by:  gsumzsplit  19050  gsumzoppg  19067  gsumpt  19085
  Copyright terms: Public domain W3C validator