Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzspan | Structured version Visualization version GIF version |
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzspan.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzspan.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
cntzspan.h | ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) |
Ref | Expression |
---|---|
cntzspan | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | submacs 18380 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
4 | 3 | acsmred 17282 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
5 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘𝑆)) | |
6 | cntzspan.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝐺) | |
7 | 1, 6 | cntzssv 18849 | . . . . . . 7 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
8 | 5, 7 | sstrdi 3929 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
9 | 1, 6 | cntzsubm 18857 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
10 | 8, 9 | syldan 590 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
11 | cntzspan.k | . . . . . 6 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
12 | 11 | mrcsscl 17246 | . . . . 5 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘𝑆) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
13 | 4, 5, 10, 12 | syl3anc 1369 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
14 | 4, 11 | mrcssvd 17249 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (Base‘𝐺)) |
15 | 1, 6 | cntzrec 18855 | . . . . 5 ⊢ (((𝐾‘𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
16 | 14, 8, 15 | syl2anc 583 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
17 | 13, 16 | mpbid 231 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾‘𝑆))) |
18 | 1, 6 | cntzsubm 18857 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐾‘𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
19 | 14, 18 | syldan 590 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
20 | 11 | mrcsscl 17246 | . . 3 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)) ∧ (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
21 | 4, 17, 19, 20 | syl3anc 1369 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
22 | 11 | mrccl 17237 | . . . 4 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
23 | 4, 8, 22 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
24 | cntzspan.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) | |
25 | 24, 6 | submcmn2 19355 | . . 3 ⊢ ((𝐾‘𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
26 | 23, 25 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
27 | 21, 26 | mpbird 256 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Moorecmre 17208 mrClscmrc 17209 ACScacs 17211 Mndcmnd 18300 SubMndcsubmnd 18344 Cntzccntz 18836 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: gsumzsplit 19443 gsumzoppg 19460 gsumpt 19478 |
Copyright terms: Public domain | W3C validator |