Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . . . . 6
β’
(BaseβπΊ) =
(BaseβπΊ) |
2 | 1 | submacs 18745 |
. . . . 5
β’ (πΊ β Mnd β
(SubMndβπΊ) β
(ACSβ(BaseβπΊ))) |
3 | 2 | adantr 480 |
. . . 4
β’ ((πΊ β Mnd β§ π β (πβπ)) β (SubMndβπΊ) β (ACSβ(BaseβπΊ))) |
4 | 3 | acsmred 17605 |
. . 3
β’ ((πΊ β Mnd β§ π β (πβπ)) β (SubMndβπΊ) β (Mooreβ(BaseβπΊ))) |
5 | | simpr 484 |
. . . . 5
β’ ((πΊ β Mnd β§ π β (πβπ)) β π β (πβπ)) |
6 | | cntzspan.z |
. . . . . . . 8
β’ π = (CntzβπΊ) |
7 | 1, 6 | cntzssv 19234 |
. . . . . . 7
β’ (πβπ) β (BaseβπΊ) |
8 | 5, 7 | sstrdi 3994 |
. . . . . 6
β’ ((πΊ β Mnd β§ π β (πβπ)) β π β (BaseβπΊ)) |
9 | 1, 6 | cntzsubm 19244 |
. . . . . 6
β’ ((πΊ β Mnd β§ π β (BaseβπΊ)) β (πβπ) β (SubMndβπΊ)) |
10 | 8, 9 | syldan 590 |
. . . . 5
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πβπ) β (SubMndβπΊ)) |
11 | | cntzspan.k |
. . . . . 6
β’ πΎ =
(mrClsβ(SubMndβπΊ)) |
12 | 11 | mrcsscl 17569 |
. . . . 5
β’
(((SubMndβπΊ)
β (Mooreβ(BaseβπΊ)) β§ π β (πβπ) β§ (πβπ) β (SubMndβπΊ)) β (πΎβπ) β (πβπ)) |
13 | 4, 5, 10, 12 | syl3anc 1370 |
. . . 4
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πΎβπ) β (πβπ)) |
14 | 4, 11 | mrcssvd 17572 |
. . . . 5
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πΎβπ) β (BaseβπΊ)) |
15 | 1, 6 | cntzrec 19242 |
. . . . 5
β’ (((πΎβπ) β (BaseβπΊ) β§ π β (BaseβπΊ)) β ((πΎβπ) β (πβπ) β π β (πβ(πΎβπ)))) |
16 | 14, 8, 15 | syl2anc 583 |
. . . 4
β’ ((πΊ β Mnd β§ π β (πβπ)) β ((πΎβπ) β (πβπ) β π β (πβ(πΎβπ)))) |
17 | 13, 16 | mpbid 231 |
. . 3
β’ ((πΊ β Mnd β§ π β (πβπ)) β π β (πβ(πΎβπ))) |
18 | 1, 6 | cntzsubm 19244 |
. . . 4
β’ ((πΊ β Mnd β§ (πΎβπ) β (BaseβπΊ)) β (πβ(πΎβπ)) β (SubMndβπΊ)) |
19 | 14, 18 | syldan 590 |
. . 3
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πβ(πΎβπ)) β (SubMndβπΊ)) |
20 | 11 | mrcsscl 17569 |
. . 3
β’
(((SubMndβπΊ)
β (Mooreβ(BaseβπΊ)) β§ π β (πβ(πΎβπ)) β§ (πβ(πΎβπ)) β (SubMndβπΊ)) β (πΎβπ) β (πβ(πΎβπ))) |
21 | 4, 17, 19, 20 | syl3anc 1370 |
. 2
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πΎβπ) β (πβ(πΎβπ))) |
22 | 11 | mrccl 17560 |
. . . 4
β’
(((SubMndβπΊ)
β (Mooreβ(BaseβπΊ)) β§ π β (BaseβπΊ)) β (πΎβπ) β (SubMndβπΊ)) |
23 | 4, 8, 22 | syl2anc 583 |
. . 3
β’ ((πΊ β Mnd β§ π β (πβπ)) β (πΎβπ) β (SubMndβπΊ)) |
24 | | cntzspan.h |
. . . 4
β’ π» = (πΊ βΎs (πΎβπ)) |
25 | 24, 6 | submcmn2 19749 |
. . 3
β’ ((πΎβπ) β (SubMndβπΊ) β (π» β CMnd β (πΎβπ) β (πβ(πΎβπ)))) |
26 | 23, 25 | syl 17 |
. 2
β’ ((πΊ β Mnd β§ π β (πβπ)) β (π» β CMnd β (πΎβπ) β (πβ(πΎβπ)))) |
27 | 21, 26 | mpbird 257 |
1
β’ ((πΊ β Mnd β§ π β (πβπ)) β π» β CMnd) |