MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzspan Structured version   Visualization version   GIF version

Theorem cntzspan 19083
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzspan.z 𝑍 = (Cntz‘𝐺)
cntzspan.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
cntzspan.h 𝐻 = (𝐺s (𝐾𝑆))
Assertion
Ref Expression
cntzspan ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)

Proof of Theorem cntzspan
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21submacs 18107 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
32adantr 484 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
43acsmred 17030 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5 simpr 488 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍𝑆))
6 cntzspan.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
71, 6cntzssv 18576 . . . . . . 7 (𝑍𝑆) ⊆ (Base‘𝐺)
85, 7sstrdi 3889 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
91, 6cntzsubm 18584 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
108, 9syldan 594 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
11 cntzspan.k . . . . . 6 𝐾 = (mrCls‘(SubMnd‘𝐺))
1211mrcsscl 16994 . . . . 5 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍𝑆) ∧ (𝑍𝑆) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍𝑆))
134, 5, 10, 12syl3anc 1372 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍𝑆))
144, 11mrcssvd 16997 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (Base‘𝐺))
151, 6cntzrec 18582 . . . . 5 (((𝐾𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1614, 8, 15syl2anc 587 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1713, 16mpbid 235 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾𝑆)))
181, 6cntzsubm 18584 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐾𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
1914, 18syldan 594 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
2011mrcsscl 16994 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾𝑆)) ∧ (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
214, 17, 19, 20syl3anc 1372 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
2211mrccl 16985 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
234, 8, 22syl2anc 587 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
24 cntzspan.h . . . 4 𝐻 = (𝐺s (𝐾𝑆))
2524, 6submcmn2 19078 . . 3 ((𝐾𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2623, 25syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2721, 26mpbird 260 1 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wss 3843  cfv 6339  (class class class)co 7170  Basecbs 16586  s cress 16587  Moorecmre 16956  mrClscmrc 16957  ACScacs 16959  Mndcmnd 18027  SubMndcsubmnd 18071  Cntzccntz 18563  CMndccmn 19024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-0g 16818  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-cntz 18565  df-cmn 19026
This theorem is referenced by:  gsumzsplit  19166  gsumzoppg  19183  gsumpt  19201
  Copyright terms: Public domain W3C validator