| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzspan | Structured version Visualization version GIF version | ||
| Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzspan.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzspan.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
| cntzspan.h | ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) |
| Ref | Expression |
|---|---|
| cntzspan | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | submacs 18735 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 4 | 3 | acsmred 17562 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘𝑆)) | |
| 6 | cntzspan.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 7 | 1, 6 | cntzssv 19240 | . . . . . . 7 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
| 8 | 5, 7 | sstrdi 3942 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
| 9 | 1, 6 | cntzsubm 19250 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
| 10 | 8, 9 | syldan 591 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
| 11 | cntzspan.k | . . . . . 6 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
| 12 | 11 | mrcsscl 17526 | . . . . 5 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘𝑆) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
| 13 | 4, 5, 10, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
| 14 | 4, 11 | mrcssvd 17529 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (Base‘𝐺)) |
| 15 | 1, 6 | cntzrec 19248 | . . . . 5 ⊢ (((𝐾‘𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 16 | 14, 8, 15 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 17 | 13, 16 | mpbid 232 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾‘𝑆))) |
| 18 | 1, 6 | cntzsubm 19250 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐾‘𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
| 19 | 14, 18 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
| 20 | 11 | mrcsscl 17526 | . . 3 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)) ∧ (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
| 21 | 4, 17, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
| 22 | 11 | mrccl 17517 | . . . 4 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
| 23 | 4, 8, 22 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
| 24 | cntzspan.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) | |
| 25 | 24, 6 | submcmn2 19751 | . . 3 ⊢ ((𝐾‘𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 27 | 21, 26 | mpbird 257 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Moorecmre 17484 mrClscmrc 17485 ACScacs 17487 Mndcmnd 18642 SubMndcsubmnd 18690 Cntzccntz 19227 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-cntz 19229 df-cmn 19694 |
| This theorem is referenced by: gsumzsplit 19839 gsumzoppg 19856 gsumpt 19874 |
| Copyright terms: Public domain | W3C validator |