| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzspan | Structured version Visualization version GIF version | ||
| Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzspan.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzspan.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
| cntzspan.h | ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) |
| Ref | Expression |
|---|---|
| cntzspan | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | submacs 18701 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 4 | 3 | acsmred 17562 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘𝑆)) | |
| 6 | cntzspan.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 7 | 1, 6 | cntzssv 19207 | . . . . . . 7 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
| 8 | 5, 7 | sstrdi 3948 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
| 9 | 1, 6 | cntzsubm 19217 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
| 10 | 8, 9 | syldan 591 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
| 11 | cntzspan.k | . . . . . 6 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
| 12 | 11 | mrcsscl 17526 | . . . . 5 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘𝑆) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
| 13 | 4, 5, 10, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
| 14 | 4, 11 | mrcssvd 17529 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (Base‘𝐺)) |
| 15 | 1, 6 | cntzrec 19215 | . . . . 5 ⊢ (((𝐾‘𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 16 | 14, 8, 15 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 17 | 13, 16 | mpbid 232 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾‘𝑆))) |
| 18 | 1, 6 | cntzsubm 19217 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐾‘𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
| 19 | 14, 18 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
| 20 | 11 | mrcsscl 17526 | . . 3 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)) ∧ (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
| 21 | 4, 17, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
| 22 | 11 | mrccl 17517 | . . . 4 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
| 23 | 4, 8, 22 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
| 24 | cntzspan.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) | |
| 25 | 24, 6 | submcmn2 19718 | . . 3 ⊢ ((𝐾‘𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
| 27 | 21, 26 | mpbird 257 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Moorecmre 17484 mrClscmrc 17485 ACScacs 17487 Mndcmnd 18608 SubMndcsubmnd 18656 Cntzccntz 19194 CMndccmn 19659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-cntz 19196 df-cmn 19661 |
| This theorem is referenced by: gsumzsplit 19806 gsumzoppg 19823 gsumpt 19841 |
| Copyright terms: Public domain | W3C validator |