![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzspan | Structured version Visualization version GIF version |
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzspan.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzspan.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
cntzspan.h | ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) |
Ref | Expression |
---|---|
cntzspan | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | submacs 18862 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
4 | 3 | acsmred 17714 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
5 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘𝑆)) | |
6 | cntzspan.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝐺) | |
7 | 1, 6 | cntzssv 19368 | . . . . . . 7 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
8 | 5, 7 | sstrdi 4021 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
9 | 1, 6 | cntzsubm 19378 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
10 | 8, 9 | syldan 590 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
11 | cntzspan.k | . . . . . 6 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
12 | 11 | mrcsscl 17678 | . . . . 5 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘𝑆) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
13 | 4, 5, 10, 12 | syl3anc 1371 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
14 | 4, 11 | mrcssvd 17681 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (Base‘𝐺)) |
15 | 1, 6 | cntzrec 19376 | . . . . 5 ⊢ (((𝐾‘𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
16 | 14, 8, 15 | syl2anc 583 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
17 | 13, 16 | mpbid 232 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾‘𝑆))) |
18 | 1, 6 | cntzsubm 19378 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐾‘𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
19 | 14, 18 | syldan 590 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
20 | 11 | mrcsscl 17678 | . . 3 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)) ∧ (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
21 | 4, 17, 19, 20 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
22 | 11 | mrccl 17669 | . . . 4 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
23 | 4, 8, 22 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
24 | cntzspan.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) | |
25 | 24, 6 | submcmn2 19881 | . . 3 ⊢ ((𝐾‘𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
26 | 23, 25 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
27 | 21, 26 | mpbird 257 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Moorecmre 17640 mrClscmrc 17641 ACScacs 17643 Mndcmnd 18772 SubMndcsubmnd 18817 Cntzccntz 19355 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-cntz 19357 df-cmn 19824 |
This theorem is referenced by: gsumzsplit 19969 gsumzoppg 19986 gsumpt 20004 |
Copyright terms: Public domain | W3C validator |