![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzspan | Structured version Visualization version GIF version |
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzspan.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzspan.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
cntzspan.h | ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) |
Ref | Expression |
---|---|
cntzspan | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | submacs 17718 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
3 | 2 | adantr 474 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
4 | 3 | acsmred 16669 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
5 | simpr 479 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘𝑆)) | |
6 | cntzspan.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝐺) | |
7 | 1, 6 | cntzssv 18111 | . . . . . . 7 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
8 | 5, 7 | syl6ss 3839 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
9 | 1, 6 | cntzsubm 18118 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
10 | 8, 9 | syldan 587 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) |
11 | cntzspan.k | . . . . . 6 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
12 | 11 | mrcsscl 16633 | . . . . 5 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘𝑆) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
13 | 4, 5, 10, 12 | syl3anc 1496 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘𝑆)) |
14 | 4, 11 | mrcssvd 16636 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (Base‘𝐺)) |
15 | 1, 6 | cntzrec 18116 | . . . . 5 ⊢ (((𝐾‘𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
16 | 14, 8, 15 | syl2anc 581 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → ((𝐾‘𝑆) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)))) |
17 | 13, 16 | mpbid 224 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾‘𝑆))) |
18 | 1, 6 | cntzsubm 18118 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐾‘𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
19 | 14, 18 | syldan 587 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) |
20 | 11 | mrcsscl 16633 | . . 3 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾‘𝑆)) ∧ (𝑍‘(𝐾‘𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
21 | 4, 17, 19, 20 | syl3anc 1496 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆))) |
22 | 11 | mrccl 16624 | . . . 4 ⊢ (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
23 | 4, 8, 22 | syl2anc 581 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐾‘𝑆) ∈ (SubMnd‘𝐺)) |
24 | cntzspan.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) | |
25 | 24, 6 | submcmn2 18597 | . . 3 ⊢ ((𝐾‘𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
26 | 23, 25 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾‘𝑆) ⊆ (𝑍‘(𝐾‘𝑆)))) |
27 | 21, 26 | mpbird 249 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3798 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 ↾s cress 16223 Moorecmre 16595 mrClscmrc 16596 ACScacs 16598 Mndcmnd 17647 SubMndcsubmnd 17687 Cntzccntz 18098 CMndccmn 18546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-0g 16455 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-cntz 18100 df-cmn 18548 |
This theorem is referenced by: gsumzsplit 18680 gsumzoppg 18697 gsumpt 18714 |
Copyright terms: Public domain | W3C validator |