MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzspan Structured version   Visualization version   GIF version

Theorem cntzspan 19876
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzspan.z 𝑍 = (Cntz‘𝐺)
cntzspan.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
cntzspan.h 𝐻 = (𝐺s (𝐾𝑆))
Assertion
Ref Expression
cntzspan ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)

Proof of Theorem cntzspan
StepHypRef Expression
1 eqid 2734 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21submacs 18852 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
32adantr 480 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
43acsmred 17700 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5 simpr 484 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍𝑆))
6 cntzspan.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
71, 6cntzssv 19358 . . . . . . 7 (𝑍𝑆) ⊆ (Base‘𝐺)
85, 7sstrdi 4007 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
91, 6cntzsubm 19368 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
108, 9syldan 591 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
11 cntzspan.k . . . . . 6 𝐾 = (mrCls‘(SubMnd‘𝐺))
1211mrcsscl 17664 . . . . 5 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍𝑆) ∧ (𝑍𝑆) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍𝑆))
134, 5, 10, 12syl3anc 1370 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍𝑆))
144, 11mrcssvd 17667 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (Base‘𝐺))
151, 6cntzrec 19366 . . . . 5 (((𝐾𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1614, 8, 15syl2anc 584 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1713, 16mpbid 232 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾𝑆)))
181, 6cntzsubm 19368 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐾𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
1914, 18syldan 591 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
2011mrcsscl 17664 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾𝑆)) ∧ (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
214, 17, 19, 20syl3anc 1370 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
2211mrccl 17655 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
234, 8, 22syl2anc 584 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
24 cntzspan.h . . . 4 𝐻 = (𝐺s (𝐾𝑆))
2524, 6submcmn2 19871 . . 3 ((𝐾𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2623, 25syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2721, 26mpbird 257 1 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wss 3962  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  Moorecmre 17626  mrClscmrc 17627  ACScacs 17629  Mndcmnd 18759  SubMndcsubmnd 18807  Cntzccntz 19345  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  gsumzsplit  19959  gsumzoppg  19976  gsumpt  19994
  Copyright terms: Public domain W3C validator