MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzspan Structured version   Visualization version   GIF version

Theorem cntzspan 19823
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzspan.z 𝑍 = (Cntz‘𝐺)
cntzspan.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
cntzspan.h 𝐻 = (𝐺s (𝐾𝑆))
Assertion
Ref Expression
cntzspan ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)

Proof of Theorem cntzspan
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21submacs 18803 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
32adantr 480 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (ACS‘(Base‘𝐺)))
43acsmred 17666 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5 simpr 484 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍𝑆))
6 cntzspan.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
71, 6cntzssv 19309 . . . . . . 7 (𝑍𝑆) ⊆ (Base‘𝐺)
85, 7sstrdi 3971 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
91, 6cntzsubm 19319 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
108, 9syldan 591 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍𝑆) ∈ (SubMnd‘𝐺))
11 cntzspan.k . . . . . 6 𝐾 = (mrCls‘(SubMnd‘𝐺))
1211mrcsscl 17630 . . . . 5 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍𝑆) ∧ (𝑍𝑆) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍𝑆))
134, 5, 10, 12syl3anc 1373 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍𝑆))
144, 11mrcssvd 17633 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (Base‘𝐺))
151, 6cntzrec 19317 . . . . 5 (((𝐾𝑆) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1614, 8, 15syl2anc 584 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → ((𝐾𝑆) ⊆ (𝑍𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝐾𝑆))))
1713, 16mpbid 232 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝑆 ⊆ (𝑍‘(𝐾𝑆)))
181, 6cntzsubm 19319 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐾𝑆) ⊆ (Base‘𝐺)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
1914, 18syldan 591 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺))
2011mrcsscl 17630 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (𝑍‘(𝐾𝑆)) ∧ (𝑍‘(𝐾𝑆)) ∈ (SubMnd‘𝐺)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
214, 17, 19, 20syl3anc 1373 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆)))
2211mrccl 17621 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
234, 8, 22syl2anc 584 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐾𝑆) ∈ (SubMnd‘𝐺))
24 cntzspan.h . . . 4 𝐻 = (𝐺s (𝐾𝑆))
2524, 6submcmn2 19818 . . 3 ((𝐾𝑆) ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2623, 25syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → (𝐻 ∈ CMnd ↔ (𝐾𝑆) ⊆ (𝑍‘(𝐾𝑆))))
2721, 26mpbird 257 1 ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍𝑆)) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  cfv 6530  (class class class)co 7403  Basecbs 17226  s cress 17249  Moorecmre 17592  mrClscmrc 17593  ACScacs 17595  Mndcmnd 18710  SubMndcsubmnd 18758  Cntzccntz 19296  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-cntz 19298  df-cmn 19761
This theorem is referenced by:  gsumzsplit  19906  gsumzoppg  19923  gsumpt  19941
  Copyright terms: Public domain W3C validator