MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Structured version   Visualization version   GIF version

Theorem lsmmod 19584
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))

Proof of Theorem lsmmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 simpl2 1192 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 inss1 4228 . . . . 5 (𝑇𝑈) ⊆ 𝑇
43a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑇)
5 lsmmod.p . . . . 5 = (LSSum‘𝐺)
65lsmless2 19570 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
71, 2, 4, 6syl3anc 1371 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
8 simpr 485 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆𝑈)
9 inss2 4229 . . . . 5 (𝑇𝑈) ⊆ 𝑈
109a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑈)
11 subgrcl 19047 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2732 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312subgacs 19077 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
14 acsmre 17600 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
151, 11, 13, 144syl 19 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16 simpl3 1193 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
17 mreincl 17547 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
1815, 2, 16, 17syl3anc 1371 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
195lsmlub 19573 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
201, 18, 16, 19syl3anc 1371 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
218, 10, 20mpbi2and 710 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ 𝑈)
227, 21ssind 4232 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ ((𝑆 𝑇) ∩ 𝑈))
23 elin 3964 . . . 4 (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) ↔ (𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈))
24 eqid 2732 . . . . . . . 8 (+g𝐺) = (+g𝐺)
2524, 5lsmelval 19558 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
261, 2, 25syl2anc 584 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
271adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
2818adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
29 simprll 777 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑆)
30 simprlr 778 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑇)
3127, 11syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝐺 ∈ Grp)
3216adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
3312subgss 19043 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝐺))
358adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆𝑈)
3635, 29sseldd 3983 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑈)
3734, 36sseldd 3983 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦 ∈ (Base‘𝐺))
38 eqid 2732 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
39 eqid 2732 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
4012, 24, 38, 39grplinv 18910 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4131, 37, 40syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4241oveq1d 7426 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
4339subginvcl 19051 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑈) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4432, 36, 43syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4534, 44sseldd 3983 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
46 simpll2 1213 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
4712subgss 19043 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ⊆ (Base‘𝐺))
4948, 30sseldd 3983 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (Base‘𝐺))
5012, 24grpass 18864 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5131, 45, 37, 49, 50syl13anc 1372 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5212, 24, 38grplid 18888 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5331, 49, 52syl2anc 584 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5442, 51, 533eqtr3d 2780 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) = 𝑧)
55 simprr 771 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ 𝑈)
5624subgcl 19052 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑦) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5732, 44, 55, 56syl3anc 1371 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5854, 57eqeltrrd 2834 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑈)
5930, 58elind 4194 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (𝑇𝑈))
6024, 5lsmelvali 19559 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺)) ∧ (𝑦𝑆𝑧 ∈ (𝑇𝑈))) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6127, 28, 29, 59, 60syl22anc 837 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6261expr 457 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
63 eleq1 2821 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑈))
64 eleq1 2821 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∈ (𝑆 (𝑇𝑈)) ↔ (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
6563, 64imbi12d 344 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈))) ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))))
6662, 65syl5ibrcom 246 . . . . . . 7 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6766rexlimdvva 3211 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6826, 67sylbid 239 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6968impd 411 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7023, 69biimtrid 241 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7170ssrdv 3988 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆 𝑇) ∩ 𝑈) ⊆ (𝑆 (𝑇𝑈)))
7222, 71eqssd 3999 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  cin 3947  wss 3948  cfv 6543  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  0gc0g 17389  Moorecmre 17530  ACScacs 17533  Grpcgrp 18855  invgcminusg 18856  SubGrpcsubg 19036  LSSumclsm 19543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-subg 19039  df-lsm 19545
This theorem is referenced by:  lsmmod2  19585  lcvexchlem2  38208  dihmeetlem9N  40489
  Copyright terms: Public domain W3C validator