MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Structured version   Visualization version   GIF version

Theorem lsmmod 19196
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))

Proof of Theorem lsmmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 simpl2 1190 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 inss1 4159 . . . . 5 (𝑇𝑈) ⊆ 𝑇
43a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑇)
5 lsmmod.p . . . . 5 = (LSSum‘𝐺)
65lsmless2 19181 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
71, 2, 4, 6syl3anc 1369 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
8 simpr 484 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆𝑈)
9 inss2 4160 . . . . 5 (𝑇𝑈) ⊆ 𝑈
109a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑈)
11 subgrcl 18675 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2738 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312subgacs 18704 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
14 acsmre 17278 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
151, 11, 13, 144syl 19 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16 simpl3 1191 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
17 mreincl 17225 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
1815, 2, 16, 17syl3anc 1369 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
195lsmlub 19185 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
201, 18, 16, 19syl3anc 1369 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
218, 10, 20mpbi2and 708 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ 𝑈)
227, 21ssind 4163 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ ((𝑆 𝑇) ∩ 𝑈))
23 elin 3899 . . . 4 (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) ↔ (𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈))
24 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
2524, 5lsmelval 19169 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
261, 2, 25syl2anc 583 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
271adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
2818adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
29 simprll 775 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑆)
30 simprlr 776 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑇)
3127, 11syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝐺 ∈ Grp)
3216adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
3312subgss 18671 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝐺))
358adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆𝑈)
3635, 29sseldd 3918 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑈)
3734, 36sseldd 3918 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦 ∈ (Base‘𝐺))
38 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
39 eqid 2738 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
4012, 24, 38, 39grplinv 18543 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4131, 37, 40syl2anc 583 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4241oveq1d 7270 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
4339subginvcl 18679 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑈) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4432, 36, 43syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4534, 44sseldd 3918 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
46 simpll2 1211 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
4712subgss 18671 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ⊆ (Base‘𝐺))
4948, 30sseldd 3918 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (Base‘𝐺))
5012, 24grpass 18501 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5131, 45, 37, 49, 50syl13anc 1370 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5212, 24, 38grplid 18524 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5331, 49, 52syl2anc 583 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5442, 51, 533eqtr3d 2786 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) = 𝑧)
55 simprr 769 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ 𝑈)
5624subgcl 18680 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑦) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5732, 44, 55, 56syl3anc 1369 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5854, 57eqeltrrd 2840 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑈)
5930, 58elind 4124 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (𝑇𝑈))
6024, 5lsmelvali 19170 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺)) ∧ (𝑦𝑆𝑧 ∈ (𝑇𝑈))) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6127, 28, 29, 59, 60syl22anc 835 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6261expr 456 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
63 eleq1 2826 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑈))
64 eleq1 2826 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∈ (𝑆 (𝑇𝑈)) ↔ (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
6563, 64imbi12d 344 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈))) ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))))
6662, 65syl5ibrcom 246 . . . . . . 7 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6766rexlimdvva 3222 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6826, 67sylbid 239 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6968impd 410 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7023, 69syl5bi 241 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7170ssrdv 3923 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆 𝑇) ∩ 𝑈) ⊆ (𝑆 (𝑇𝑈)))
7222, 71eqssd 3934 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Moorecmre 17208  ACScacs 17211  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-subg 18667  df-lsm 19156
This theorem is referenced by:  lsmmod2  19197  lcvexchlem2  36976  dihmeetlem9N  39256
  Copyright terms: Public domain W3C validator