![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgacs | Structured version Visualization version GIF version |
Description: Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
subrgacs.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrgacs | ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | issubrg3 20498 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ 𝑥 ∈ (SubMnd‘(mulGrp‘𝑅))))) |
3 | elin 3957 | . . . 4 ⊢ (𝑥 ∈ ((SubGrp‘𝑅) ∩ (SubMnd‘(mulGrp‘𝑅))) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ 𝑥 ∈ (SubMnd‘(mulGrp‘𝑅)))) | |
4 | 2, 3 | bitr4di 289 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ ((SubGrp‘𝑅) ∩ (SubMnd‘(mulGrp‘𝑅))))) |
5 | 4 | eqrdv 2722 | . 2 ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) = ((SubGrp‘𝑅) ∩ (SubMnd‘(mulGrp‘𝑅)))) |
6 | subrgacs.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 6 | fvexi 6896 | . . . 4 ⊢ 𝐵 ∈ V |
8 | mreacs 17607 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ Ring → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
10 | ringgrp 20139 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
11 | 6 | subgacs 19084 | . . . 4 ⊢ (𝑅 ∈ Grp → (SubGrp‘𝑅) ∈ (ACS‘𝐵)) |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) ∈ (ACS‘𝐵)) |
13 | 1 | ringmgp 20140 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
14 | 1, 6 | mgpbas 20041 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
15 | 14 | submacs 18748 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (SubMnd‘(mulGrp‘𝑅)) ∈ (ACS‘𝐵)) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → (SubMnd‘(mulGrp‘𝑅)) ∈ (ACS‘𝐵)) |
17 | mreincl 17548 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝑅) ∈ (ACS‘𝐵) ∧ (SubMnd‘(mulGrp‘𝑅)) ∈ (ACS‘𝐵)) → ((SubGrp‘𝑅) ∩ (SubMnd‘(mulGrp‘𝑅))) ∈ (ACS‘𝐵)) | |
18 | 9, 12, 16, 17 | syl3anc 1368 | . 2 ⊢ (𝑅 ∈ Ring → ((SubGrp‘𝑅) ∩ (SubMnd‘(mulGrp‘𝑅))) ∈ (ACS‘𝐵)) |
19 | 5, 18 | eqeltrd 2825 | 1 ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∩ cin 3940 𝒫 cpw 4595 ‘cfv 6534 Basecbs 17149 Moorecmre 17531 ACScacs 17534 Mndcmnd 18663 SubMndcsubmnd 18708 Grpcgrp 18859 SubGrpcsubg 19043 mulGrpcmgp 20035 Ringcrg 20134 SubRingcsubrg 20465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-grp 18862 df-minusg 18863 df-subg 19046 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-subrng 20442 df-subrg 20467 |
This theorem is referenced by: sdrgacs 20648 |
Copyright terms: Public domain | W3C validator |