Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubc Structured version   Visualization version   GIF version

Theorem nelsubc 49179
Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc.b 𝐵 = (Base‘𝐶)
nelsubc.s (𝜑𝑆𝐵)
nelsubc.0 (𝜑𝑆 ≠ ∅)
nelsubc.j (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
nelsubc.h 𝐻 = (Homf𝐶)
nelsubc.i 1 = (Id‘𝐶)
nelsubc.o · = (comp‘𝐶)
Assertion
Ref Expression
nelsubc (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝐽   𝑥,𝑆,𝑦,𝑧   𝑥,𝑓,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐽(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem nelsubc
StepHypRef Expression
1 nelsubc.b . 2 𝐵 = (Base‘𝐶)
2 nelsubc.s . 2 (𝜑𝑆𝐵)
3 nelsubc.0 . 2 (𝜑𝑆 ≠ ∅)
4 nelsubc.j . 2 (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
5 nelsubc.h . 2 𝐻 = (Homf𝐶)
61, 2, 3, 4, 5nelsubclem 49178 1 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17120  compcco 17173  Idccid 17571  Homf chomf 17572  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-homf 17576  df-ssc 17717
This theorem is referenced by:  nelsubc2  49180
  Copyright terms: Public domain W3C validator