| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc | Structured version Visualization version GIF version | ||
| Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| nelsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| nelsubc.0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| nelsubc.j | ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| nelsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| nelsubc.i | ⊢ 1 = (Id‘𝐶) |
| nelsubc.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| nelsubc | ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | nelsubc.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | nelsubc.0 | . 2 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 4 | nelsubc.j | . 2 ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) | |
| 5 | nelsubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | nelsubclem 49046 | 1 ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3916 ∅c0 4298 {csn 4591 〈cop 4597 class class class wbr 5109 × cxp 5638 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 compcco 17238 Idccid 17632 Homf chomf 17633 ⊆cat cssc 17775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-ixp 8873 df-homf 17637 df-ssc 17778 |
| This theorem is referenced by: nelsubc2 49048 |
| Copyright terms: Public domain | W3C validator |