Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubclem Structured version   Visualization version   GIF version

Theorem nelsubclem 49046
Description: Lemma for nelsubc 49047. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc.b 𝐵 = (Base‘𝐶)
nelsubc.s (𝜑𝑆𝐵)
nelsubc.0 (𝜑𝑆 ≠ ∅)
nelsubc.j (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
nelsubc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
nelsubclem (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Distinct variable groups:   𝑓,𝐽   𝑥,𝑆,𝑦,𝑧   𝑥,𝑓,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑥,𝑦,𝑧,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑓)   𝑆(𝑓)   𝐻(𝑥,𝑦,𝑧,𝑓)   𝐼(𝑥,𝑦,𝑧,𝑓)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem nelsubclem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5264 . . . 4 ∅ ∈ V
2 fnconstg 6750 . . . 4 (∅ ∈ V → ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆))
31, 2ax-mp 5 . . 3 ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)
4 nelsubc.j . . . 4 (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
54fneq1d 6613 . . 3 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ↔ ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)))
63, 5mpbiri 258 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
7 nelsubc.s . . 3 (𝜑𝑆𝐵)
84oveqd 7406 . . . . . 6 (𝜑 → (𝑝𝐽𝑞) = (𝑝((𝑆 × 𝑆) × {∅})𝑞))
91ovconst2 7571 . . . . . 6 ((𝑝𝑆𝑞𝑆) → (𝑝((𝑆 × 𝑆) × {∅})𝑞) = ∅)
108, 9sylan9eq 2785 . . . . 5 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) = ∅)
11 0ss 4365 . . . . 5 ∅ ⊆ (𝑝𝐻𝑞)
1210, 11eqsstrdi 3993 . . . 4 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
1312ralrimivva 3181 . . 3 (𝜑 → ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
14 nelsubc.h . . . . . 6 𝐻 = (Homf𝐶)
15 nelsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
1614, 15homffn 17660 . . . . 5 𝐻 Fn (𝐵 × 𝐵)
1716a1i 11 . . . 4 (𝜑𝐻 Fn (𝐵 × 𝐵))
1815fvexi 6874 . . . . 5 𝐵 ∈ V
1918a1i 11 . . . 4 (𝜑𝐵 ∈ V)
206, 17, 19isssc 17788 . . 3 (𝜑 → (𝐽cat 𝐻 ↔ (𝑆𝐵 ∧ ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
217, 13, 20mpbir2and 713 . 2 (𝜑𝐽cat 𝐻)
22 nelsubc.0 . . . . 5 (𝜑𝑆 ≠ ∅)
234oveqd 7406 . . . . . . . 8 (𝜑 → (𝑥𝐽𝑥) = (𝑥((𝑆 × 𝑆) × {∅})𝑥))
241ovconst2 7571 . . . . . . . . 9 ((𝑥𝑆𝑥𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2524anidms 566 . . . . . . . 8 (𝑥𝑆 → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2623, 25sylan9eq 2785 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑥𝐽𝑥) = ∅)
27 nel02 4304 . . . . . . 7 ((𝑥𝐽𝑥) = ∅ → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2826, 27syl 17 . . . . . 6 ((𝜑𝑥𝑆) → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2928reximdva0 4320 . . . . 5 ((𝜑𝑆 ≠ ∅) → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
3022, 29mpdan 687 . . . 4 (𝜑 → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
31 rexnal 3083 . . . 4 (∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
3230, 31sylib 218 . . 3 (𝜑 → ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
334oveqd 7406 . . . . . . 7 (𝜑 → (𝑥𝐽𝑦) = (𝑥((𝑆 × 𝑆) × {∅})𝑦))
341ovconst2 7571 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑦) = ∅)
3533, 34sylan9eq 2785 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐽𝑦) = ∅)
36 rzal 4474 . . . . . 6 ((𝑥𝐽𝑦) = ∅ → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3735, 36syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3837ralrimivw 3130 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3938ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
4032, 39jca 511 . 2 (𝜑 → (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))
416, 21, 40jca32 515 1 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3916  c0 4298  {csn 4591   class class class wbr 5109   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  Basecbs 17185  Homf chomf 17633  cat cssc 17775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ixp 8873  df-homf 17637  df-ssc 17778
This theorem is referenced by:  nelsubc  49047  nelsubc3  49050
  Copyright terms: Public domain W3C validator