Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubclem Structured version   Visualization version   GIF version

Theorem nelsubclem 49178
Description: Lemma for nelsubc 49179. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc.b 𝐵 = (Base‘𝐶)
nelsubc.s (𝜑𝑆𝐵)
nelsubc.0 (𝜑𝑆 ≠ ∅)
nelsubc.j (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
nelsubc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
nelsubclem (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Distinct variable groups:   𝑓,𝐽   𝑥,𝑆,𝑦,𝑧   𝑥,𝑓,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑥,𝑦,𝑧,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑓)   𝑆(𝑓)   𝐻(𝑥,𝑦,𝑧,𝑓)   𝐼(𝑥,𝑦,𝑧,𝑓)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem nelsubclem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5243 . . . 4 ∅ ∈ V
2 fnconstg 6711 . . . 4 (∅ ∈ V → ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆))
31, 2ax-mp 5 . . 3 ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)
4 nelsubc.j . . . 4 (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
54fneq1d 6574 . . 3 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ↔ ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)))
63, 5mpbiri 258 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
7 nelsubc.s . . 3 (𝜑𝑆𝐵)
84oveqd 7363 . . . . . 6 (𝜑 → (𝑝𝐽𝑞) = (𝑝((𝑆 × 𝑆) × {∅})𝑞))
91ovconst2 7526 . . . . . 6 ((𝑝𝑆𝑞𝑆) → (𝑝((𝑆 × 𝑆) × {∅})𝑞) = ∅)
108, 9sylan9eq 2786 . . . . 5 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) = ∅)
11 0ss 4347 . . . . 5 ∅ ⊆ (𝑝𝐻𝑞)
1210, 11eqsstrdi 3974 . . . 4 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
1312ralrimivva 3175 . . 3 (𝜑 → ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
14 nelsubc.h . . . . . 6 𝐻 = (Homf𝐶)
15 nelsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
1614, 15homffn 17599 . . . . 5 𝐻 Fn (𝐵 × 𝐵)
1716a1i 11 . . . 4 (𝜑𝐻 Fn (𝐵 × 𝐵))
1815fvexi 6836 . . . . 5 𝐵 ∈ V
1918a1i 11 . . . 4 (𝜑𝐵 ∈ V)
206, 17, 19isssc 17727 . . 3 (𝜑 → (𝐽cat 𝐻 ↔ (𝑆𝐵 ∧ ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
217, 13, 20mpbir2and 713 . 2 (𝜑𝐽cat 𝐻)
22 nelsubc.0 . . . . 5 (𝜑𝑆 ≠ ∅)
234oveqd 7363 . . . . . . . 8 (𝜑 → (𝑥𝐽𝑥) = (𝑥((𝑆 × 𝑆) × {∅})𝑥))
241ovconst2 7526 . . . . . . . . 9 ((𝑥𝑆𝑥𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2524anidms 566 . . . . . . . 8 (𝑥𝑆 → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2623, 25sylan9eq 2786 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑥𝐽𝑥) = ∅)
27 nel02 4286 . . . . . . 7 ((𝑥𝐽𝑥) = ∅ → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2826, 27syl 17 . . . . . 6 ((𝜑𝑥𝑆) → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2928reximdva0 4302 . . . . 5 ((𝜑𝑆 ≠ ∅) → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
3022, 29mpdan 687 . . . 4 (𝜑 → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
31 rexnal 3084 . . . 4 (∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
3230, 31sylib 218 . . 3 (𝜑 → ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
334oveqd 7363 . . . . . . 7 (𝜑 → (𝑥𝐽𝑦) = (𝑥((𝑆 × 𝑆) × {∅})𝑦))
341ovconst2 7526 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑦) = ∅)
3533, 34sylan9eq 2786 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐽𝑦) = ∅)
36 rzal 4456 . . . . . 6 ((𝑥𝐽𝑦) = ∅ → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3735, 36syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3837ralrimivw 3128 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3938ralrimivva 3175 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
4032, 39jca 511 . 2 (𝜑 → (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))
416, 21, 40jca32 515 1 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280  {csn 4573   class class class wbr 5089   × cxp 5612   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17120  Homf chomf 17572  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-homf 17576  df-ssc 17717
This theorem is referenced by:  nelsubc  49179  nelsubc3  49182
  Copyright terms: Public domain W3C validator