| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 5275 |
. . . 4
⊢ ∅
∈ V |
| 2 | | fnconstg 6763 |
. . . 4
⊢ (∅
∈ V → ((𝑆 ×
𝑆) × {∅}) Fn
(𝑆 × 𝑆)) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆) |
| 4 | | nelsubc.j |
. . . 4
⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| 5 | 4 | fneq1d 6628 |
. . 3
⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ↔ ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆))) |
| 6 | 3, 5 | mpbiri 258 |
. 2
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 7 | | nelsubc.s |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 4 | oveqd 7417 |
. . . . . 6
⊢ (𝜑 → (𝑝𝐽𝑞) = (𝑝((𝑆 × 𝑆) × {∅})𝑞)) |
| 9 | 1 | ovconst2 7582 |
. . . . . 6
⊢ ((𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆) → (𝑝((𝑆 × 𝑆) × {∅})𝑞) = ∅) |
| 10 | 8, 9 | sylan9eq 2789 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆)) → (𝑝𝐽𝑞) = ∅) |
| 11 | | 0ss 4373 |
. . . . 5
⊢ ∅
⊆ (𝑝𝐻𝑞) |
| 12 | 10, 11 | eqsstrdi 4001 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆)) → (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)) |
| 13 | 12 | ralrimivva 3185 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ 𝑆 ∀𝑞 ∈ 𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)) |
| 14 | | nelsubc.h |
. . . . . 6
⊢ 𝐻 = (Homf
‘𝐶) |
| 15 | | nelsubc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
| 16 | 14, 15 | homffn 17692 |
. . . . 5
⊢ 𝐻 Fn (𝐵 × 𝐵) |
| 17 | 16 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 18 | 15 | fvexi 6887 |
. . . . 5
⊢ 𝐵 ∈ V |
| 19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ V) |
| 20 | 6, 17, 19 | isssc 17820 |
. . 3
⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑝 ∈ 𝑆 ∀𝑞 ∈ 𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))) |
| 21 | 7, 13, 20 | mpbir2and 713 |
. 2
⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| 22 | | nelsubc.0 |
. . . . 5
⊢ (𝜑 → 𝑆 ≠ ∅) |
| 23 | 4 | oveqd 7417 |
. . . . . . . 8
⊢ (𝜑 → (𝑥𝐽𝑥) = (𝑥((𝑆 × 𝑆) × {∅})𝑥)) |
| 24 | 1 | ovconst2 7582 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅) |
| 25 | 24 | anidms 566 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑆 → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅) |
| 26 | 23, 25 | sylan9eq 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝐽𝑥) = ∅) |
| 27 | | nel02 4312 |
. . . . . . 7
⊢ ((𝑥𝐽𝑥) = ∅ → ¬ 𝐼 ∈ (𝑥𝐽𝑥)) |
| 28 | 26, 27 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ¬ 𝐼 ∈ (𝑥𝐽𝑥)) |
| 29 | 28 | reximdva0 4328 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ≠ ∅) → ∃𝑥 ∈ 𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥)) |
| 30 | 22, 29 | mpdan 687 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥)) |
| 31 | | rexnal 3088 |
. . . 4
⊢
(∃𝑥 ∈
𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥)) |
| 32 | 30, 31 | sylib 218 |
. . 3
⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥)) |
| 33 | 4 | oveqd 7417 |
. . . . . . 7
⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥((𝑆 × 𝑆) × {∅})𝑦)) |
| 34 | 1 | ovconst2 7582 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑦) = ∅) |
| 35 | 33, 34 | sylan9eq 2789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐽𝑦) = ∅) |
| 36 | | rzal 4482 |
. . . . . 6
⊢ ((𝑥𝐽𝑦) = ∅ → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓) |
| 37 | 35, 36 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓) |
| 38 | 37 | ralrimivw 3134 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓) |
| 39 | 38 | ralrimivva 3185 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓) |
| 40 | 32, 39 | jca 511 |
. 2
⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)) |
| 41 | 6, 21, 40 | jca32 515 |
1
⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)))) |