Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubclem Structured version   Visualization version   GIF version

Theorem nelsubclem 49056
Description: Lemma for nelsubc 49057. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc.b 𝐵 = (Base‘𝐶)
nelsubc.s (𝜑𝑆𝐵)
nelsubc.0 (𝜑𝑆 ≠ ∅)
nelsubc.j (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
nelsubc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
nelsubclem (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Distinct variable groups:   𝑓,𝐽   𝑥,𝑆,𝑦,𝑧   𝑥,𝑓,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑥,𝑦,𝑧,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑓)   𝑆(𝑓)   𝐻(𝑥,𝑦,𝑧,𝑓)   𝐼(𝑥,𝑦,𝑧,𝑓)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem nelsubclem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5246 . . . 4 ∅ ∈ V
2 fnconstg 6712 . . . 4 (∅ ∈ V → ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆))
31, 2ax-mp 5 . . 3 ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)
4 nelsubc.j . . . 4 (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
54fneq1d 6575 . . 3 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ↔ ((𝑆 × 𝑆) × {∅}) Fn (𝑆 × 𝑆)))
63, 5mpbiri 258 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
7 nelsubc.s . . 3 (𝜑𝑆𝐵)
84oveqd 7366 . . . . . 6 (𝜑 → (𝑝𝐽𝑞) = (𝑝((𝑆 × 𝑆) × {∅})𝑞))
91ovconst2 7529 . . . . . 6 ((𝑝𝑆𝑞𝑆) → (𝑝((𝑆 × 𝑆) × {∅})𝑞) = ∅)
108, 9sylan9eq 2784 . . . . 5 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) = ∅)
11 0ss 4351 . . . . 5 ∅ ⊆ (𝑝𝐻𝑞)
1210, 11eqsstrdi 3980 . . . 4 ((𝜑 ∧ (𝑝𝑆𝑞𝑆)) → (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
1312ralrimivva 3172 . . 3 (𝜑 → ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))
14 nelsubc.h . . . . . 6 𝐻 = (Homf𝐶)
15 nelsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
1614, 15homffn 17599 . . . . 5 𝐻 Fn (𝐵 × 𝐵)
1716a1i 11 . . . 4 (𝜑𝐻 Fn (𝐵 × 𝐵))
1815fvexi 6836 . . . . 5 𝐵 ∈ V
1918a1i 11 . . . 4 (𝜑𝐵 ∈ V)
206, 17, 19isssc 17727 . . 3 (𝜑 → (𝐽cat 𝐻 ↔ (𝑆𝐵 ∧ ∀𝑝𝑆𝑞𝑆 (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
217, 13, 20mpbir2and 713 . 2 (𝜑𝐽cat 𝐻)
22 nelsubc.0 . . . . 5 (𝜑𝑆 ≠ ∅)
234oveqd 7366 . . . . . . . 8 (𝜑 → (𝑥𝐽𝑥) = (𝑥((𝑆 × 𝑆) × {∅})𝑥))
241ovconst2 7529 . . . . . . . . 9 ((𝑥𝑆𝑥𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2524anidms 566 . . . . . . . 8 (𝑥𝑆 → (𝑥((𝑆 × 𝑆) × {∅})𝑥) = ∅)
2623, 25sylan9eq 2784 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑥𝐽𝑥) = ∅)
27 nel02 4290 . . . . . . 7 ((𝑥𝐽𝑥) = ∅ → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2826, 27syl 17 . . . . . 6 ((𝜑𝑥𝑆) → ¬ 𝐼 ∈ (𝑥𝐽𝑥))
2928reximdva0 4306 . . . . 5 ((𝜑𝑆 ≠ ∅) → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
3022, 29mpdan 687 . . . 4 (𝜑 → ∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥))
31 rexnal 3081 . . . 4 (∃𝑥𝑆 ¬ 𝐼 ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
3230, 31sylib 218 . . 3 (𝜑 → ¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥))
334oveqd 7366 . . . . . . 7 (𝜑 → (𝑥𝐽𝑦) = (𝑥((𝑆 × 𝑆) × {∅})𝑦))
341ovconst2 7529 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (𝑥((𝑆 × 𝑆) × {∅})𝑦) = ∅)
3533, 34sylan9eq 2784 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐽𝑦) = ∅)
36 rzal 4460 . . . . . 6 ((𝑥𝐽𝑦) = ∅ → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3735, 36syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3837ralrimivw 3125 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
3938ralrimivva 3172 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓)
4032, 39jca 511 . 2 (𝜑 → (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))
416, 21, 40jca32 515 1 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ (¬ ∀𝑥𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)𝜓))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  wss 3903  c0 4284  {csn 4577   class class class wbr 5092   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  Basecbs 17120  Homf chomf 17572  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-ixp 8825  df-homf 17576  df-ssc 17717
This theorem is referenced by:  nelsubc  49057  nelsubc3  49060
  Copyright terms: Public domain W3C validator