| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version | ||
| Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
| 2 | elssuni 4913 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | isopn3 23004 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 intcnt 22955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-top 22832 df-ntr 22958 |
| This theorem is referenced by: maxlp 23085 cnntr 23213 bcth2 25282 dvrec 25911 dvmptres 25919 dvcnvlem 25932 dvlip 25950 dvlipcn 25951 dvlip2 25952 dvne0 25968 lhop2 25972 lhop 25973 psercn 26388 dvlog 26612 dvlog2 26614 cxpcn3 26710 efrlim 26931 efrlimOLD 26932 lgamgulmlem2 26992 cvmlift2lem11 35335 cvmlift2lem12 35336 dvrelog3 42078 redvmptabs 42403 binomcxplemdvbinom 44377 binomcxplemnotnn0 44380 limciccioolb 45650 limcicciooub 45666 limcresiooub 45671 limcresioolb 45672 dirkercncflem2 46133 fourierdlem32 46168 fourierdlem33 46169 fourierdlem48 46183 fourierdlem49 46184 fourierdlem62 46197 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |