| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version | ||
| Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
| 2 | elssuni 4901 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | isopn3 22953 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 intcnt 22904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-top 22781 df-ntr 22907 |
| This theorem is referenced by: maxlp 23034 cnntr 23162 bcth2 25230 dvrec 25859 dvmptres 25867 dvcnvlem 25880 dvlip 25898 dvlipcn 25899 dvlip2 25900 dvne0 25916 lhop2 25920 lhop 25921 psercn 26336 dvlog 26560 dvlog2 26562 cxpcn3 26658 efrlim 26879 efrlimOLD 26880 lgamgulmlem2 26940 cvmlift2lem11 35300 cvmlift2lem12 35301 dvrelog3 42053 redvmptabs 42348 binomcxplemdvbinom 44342 binomcxplemnotnn0 44345 limciccioolb 45619 limcicciooub 45635 limcresiooub 45640 limcresioolb 45641 dirkercncflem2 46102 fourierdlem32 46137 fourierdlem33 46138 fourierdlem48 46152 fourierdlem49 46153 fourierdlem62 46166 fouriersw 46229 |
| Copyright terms: Public domain | W3C validator |