MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn3i Structured version   Visualization version   GIF version

Theorem isopn3i 23106
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
isopn3i ((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem isopn3i
StepHypRef Expression
1 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝐽)
2 elssuni 4942 . . 3 (𝑆𝐽𝑆 𝐽)
3 eqid 2735 . . . 4 𝐽 = 𝐽
43isopn3 23090 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
52, 4sylan2 593 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
61, 5mpbid 232 1 ((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963   cuni 4912  cfv 6563  Topctop 22915  intcnt 23041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-top 22916  df-ntr 23044
This theorem is referenced by:  maxlp  23171  cnntr  23299  bcth2  25378  dvrec  26008  dvmptres  26016  dvcnvlem  26029  dvlip  26047  dvlipcn  26048  dvlip2  26049  dvne0  26065  lhop2  26069  lhop  26070  psercn  26485  dvlog  26708  dvlog2  26710  cxpcn3  26806  efrlim  27027  efrlimOLD  27028  lgamgulmlem2  27088  cvmlift2lem11  35298  cvmlift2lem12  35299  dvrelog3  42047  redvmptabs  42369  binomcxplemdvbinom  44349  binomcxplemnotnn0  44352  limciccioolb  45577  limcicciooub  45593  limcresiooub  45598  limcresioolb  45599  dirkercncflem2  46060  fourierdlem32  46095  fourierdlem33  46096  fourierdlem48  46110  fourierdlem49  46111  fourierdlem62  46124  fouriersw  46187
  Copyright terms: Public domain W3C validator