Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version |
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
2 | elssuni 4872 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2739 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | isopn3 22226 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
6 | 1, 5 | mpbid 231 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ∪ cuni 4840 ‘cfv 6437 Topctop 22051 intcnt 22177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-top 22052 df-ntr 22180 |
This theorem is referenced by: maxlp 22307 cnntr 22435 bcth2 24503 dvrec 25128 dvmptres 25136 dvcnvlem 25149 dvlip 25166 dvlipcn 25167 dvlip2 25168 dvne0 25184 lhop2 25188 lhop 25189 psercn 25594 dvlog 25815 dvlog2 25817 cxpcn3 25910 efrlim 26128 lgamgulmlem2 26188 cvmlift2lem11 33284 cvmlift2lem12 33285 dvrelog3 40080 binomcxplemdvbinom 41978 binomcxplemnotnn0 41981 limciccioolb 43169 limcicciooub 43185 limcresiooub 43190 limcresioolb 43191 dirkercncflem2 43652 fourierdlem32 43687 fourierdlem33 43688 fourierdlem48 43702 fourierdlem49 43703 fourierdlem62 43716 fouriersw 43779 |
Copyright terms: Public domain | W3C validator |