| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version | ||
| Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
| 2 | elssuni 4887 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | isopn3 22981 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 intcnt 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-ntr 22935 |
| This theorem is referenced by: maxlp 23062 cnntr 23190 bcth2 25257 dvrec 25886 dvmptres 25894 dvcnvlem 25907 dvlip 25925 dvlipcn 25926 dvlip2 25927 dvne0 25943 lhop2 25947 lhop 25948 psercn 26363 dvlog 26587 dvlog2 26589 cxpcn3 26685 efrlim 26906 efrlimOLD 26907 lgamgulmlem2 26967 cvmlift2lem11 35357 cvmlift2lem12 35358 dvrelog3 42106 redvmptabs 42401 binomcxplemdvbinom 44394 binomcxplemnotnn0 44397 limciccioolb 45669 limcicciooub 45683 limcresiooub 45688 limcresioolb 45689 dirkercncflem2 46150 fourierdlem32 46185 fourierdlem33 46186 fourierdlem48 46200 fourierdlem49 46201 fourierdlem62 46214 fouriersw 46277 |
| Copyright terms: Public domain | W3C validator |