MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn3i Structured version   Visualization version   GIF version

Theorem isopn3i 22969
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
isopn3i ((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem isopn3i
StepHypRef Expression
1 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝐽)
2 elssuni 4901 . . 3 (𝑆𝐽𝑆 𝐽)
3 eqid 2729 . . . 4 𝐽 = 𝐽
43isopn3 22953 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
52, 4sylan2 593 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
61, 5mpbid 232 1 ((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  cfv 6511  Topctop 22780  intcnt 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-ntr 22907
This theorem is referenced by:  maxlp  23034  cnntr  23162  bcth2  25230  dvrec  25859  dvmptres  25867  dvcnvlem  25880  dvlip  25898  dvlipcn  25899  dvlip2  25900  dvne0  25916  lhop2  25920  lhop  25921  psercn  26336  dvlog  26560  dvlog2  26562  cxpcn3  26658  efrlim  26879  efrlimOLD  26880  lgamgulmlem2  26940  cvmlift2lem11  35300  cvmlift2lem12  35301  dvrelog3  42053  redvmptabs  42348  binomcxplemdvbinom  44342  binomcxplemnotnn0  44345  limciccioolb  45619  limcicciooub  45635  limcresiooub  45640  limcresioolb  45641  dirkercncflem2  46102  fourierdlem32  46137  fourierdlem33  46138  fourierdlem48  46152  fourierdlem49  46153  fourierdlem62  46166  fouriersw  46229
  Copyright terms: Public domain W3C validator