Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version |
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
2 | elssuni 4873 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2737 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | isopn3 22161 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
5 | 2, 4 | sylan2 592 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
6 | 1, 5 | mpbid 231 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ∪ cuni 4841 ‘cfv 6423 Topctop 21986 intcnt 22112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-top 21987 df-ntr 22115 |
This theorem is referenced by: maxlp 22242 cnntr 22370 bcth2 24437 dvrec 25062 dvmptres 25070 dvcnvlem 25083 dvlip 25100 dvlipcn 25101 dvlip2 25102 dvne0 25118 lhop2 25122 lhop 25123 psercn 25528 dvlog 25749 dvlog2 25751 cxpcn3 25844 efrlim 26062 lgamgulmlem2 26122 cvmlift2lem11 33217 cvmlift2lem12 33218 dvrelog3 40043 binomcxplemdvbinom 41902 binomcxplemnotnn0 41905 limciccioolb 43094 limcicciooub 43110 limcresiooub 43115 limcresioolb 43116 dirkercncflem2 43577 fourierdlem32 43612 fourierdlem33 43613 fourierdlem48 43627 fourierdlem49 43628 fourierdlem62 43641 fouriersw 43704 |
Copyright terms: Public domain | W3C validator |