![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvadd32 | Structured version Visualization version GIF version |
Description: Commutative/associative law for vector addition. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvgcl.1 | β’ π = (BaseSetβπ) |
nvgcl.2 | β’ πΊ = ( +π£ βπ) |
Ref | Expression |
---|---|
nvadd32 | β’ ((π β NrmCVec β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄πΊπ΅)πΊπΆ) = ((π΄πΊπΆ)πΊπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvgcl.2 | . . 3 β’ πΊ = ( +π£ βπ) | |
2 | 1 | nvablo 29869 | . 2 β’ (π β NrmCVec β πΊ β AbelOp) |
3 | nvgcl.1 | . . . 4 β’ π = (BaseSetβπ) | |
4 | 3, 1 | bafval 29857 | . . 3 β’ π = ran πΊ |
5 | 4 | ablo32 29802 | . 2 β’ ((πΊ β AbelOp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄πΊπ΅)πΊπΆ) = ((π΄πΊπΆ)πΊπ΅)) |
6 | 2, 5 | sylan 581 | 1 β’ ((π β NrmCVec β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄πΊπ΅)πΊπΆ) = ((π΄πΊπΆ)πΊπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 AbelOpcablo 29797 NrmCVeccnv 29837 +π£ cpv 29838 BaseSetcba 29839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-1st 7975 df-2nd 7976 df-grpo 29746 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-nmcv 29853 |
This theorem is referenced by: nvpncan2 29906 |
Copyright terms: Public domain | W3C validator |