![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version |
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bafval.1 | β’ π = (BaseSetβπ) |
bafval.2 | β’ πΊ = ( +π£ βπ) |
Ref | Expression |
---|---|
bafval | β’ π = ran πΊ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . 5 β’ (π’ = π β ( +π£ βπ’) = ( +π£ βπ)) | |
2 | 1 | rneqd 5938 | . . . 4 β’ (π’ = π β ran ( +π£ βπ’) = ran ( +π£ βπ)) |
3 | df-ba 29849 | . . . 4 β’ BaseSet = (π’ β V β¦ ran ( +π£ βπ’)) | |
4 | fvex 6905 | . . . . 5 β’ ( +π£ βπ) β V | |
5 | 4 | rnex 7903 | . . . 4 β’ ran ( +π£ βπ) β V |
6 | 2, 3, 5 | fvmpt 6999 | . . 3 β’ (π β V β (BaseSetβπ) = ran ( +π£ βπ)) |
7 | rn0 5926 | . . . . 5 β’ ran β = β | |
8 | 7 | eqcomi 2742 | . . . 4 β’ β = ran β |
9 | fvprc 6884 | . . . 4 β’ (Β¬ π β V β (BaseSetβπ) = β ) | |
10 | fvprc 6884 | . . . . 5 β’ (Β¬ π β V β ( +π£ βπ) = β ) | |
11 | 10 | rneqd 5938 | . . . 4 β’ (Β¬ π β V β ran ( +π£ βπ) = ran β ) |
12 | 8, 9, 11 | 3eqtr4a 2799 | . . 3 β’ (Β¬ π β V β (BaseSetβπ) = ran ( +π£ βπ)) |
13 | 6, 12 | pm2.61i 182 | . 2 β’ (BaseSetβπ) = ran ( +π£ βπ) |
14 | bafval.1 | . 2 β’ π = (BaseSetβπ) | |
15 | bafval.2 | . . 3 β’ πΊ = ( +π£ βπ) | |
16 | 15 | rneqi 5937 | . 2 β’ ran πΊ = ran ( +π£ βπ) |
17 | 13, 14, 16 | 3eqtr4i 2771 | 1 β’ π = ran πΊ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4323 ran crn 5678 βcfv 6544 +π£ cpv 29838 BaseSetcba 29839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-ba 29849 |
This theorem is referenced by: nvi 29867 nvgf 29871 nvsf 29872 nvgcl 29873 nvcom 29874 nvass 29875 nvadd32 29876 nvrcan 29877 nvadd4 29878 nvscl 29879 nvsid 29880 nvsass 29881 nvdi 29883 nvdir 29884 nv2 29885 nvzcl 29887 nv0rid 29888 nv0lid 29889 nv0 29890 nvsz 29891 nvinv 29892 nvinvfval 29893 nvmval 29895 nvmfval 29897 nvnnncan1 29900 nvnegneg 29902 nvrinv 29904 nvlinv 29905 nvaddsub 29908 cnnvba 29932 sspba 29980 isph 30075 phpar 30077 ip0i 30078 ipdirilem 30082 hhba 30420 hhssabloilem 30514 hhshsslem1 30520 |
Copyright terms: Public domain | W3C validator |