Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version |
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
bafval | ⊢ 𝑋 = ran 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6658 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
2 | 1 | rneqd 5779 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
3 | df-ba 28478 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
4 | fvex 6671 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
5 | 4 | rnex 7622 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
6 | 2, 3, 5 | fvmpt 6759 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
7 | rn0 5767 | . . . . 5 ⊢ ran ∅ = ∅ | |
8 | 7 | eqcomi 2767 | . . . 4 ⊢ ∅ = ran ∅ |
9 | fvprc 6650 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
10 | fvprc 6650 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | 10 | rneqd 5779 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
12 | 8, 9, 11 | 3eqtr4a 2819 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
13 | 6, 12 | pm2.61i 185 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
16 | 15 | rneqi 5778 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
17 | 13, 14, 16 | 3eqtr4i 2791 | 1 ⊢ 𝑋 = ran 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4225 ran crn 5525 ‘cfv 6335 +𝑣 cpv 28467 BaseSetcba 28468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fv 6343 df-ba 28478 |
This theorem is referenced by: nvi 28496 nvgf 28500 nvsf 28501 nvgcl 28502 nvcom 28503 nvass 28504 nvadd32 28505 nvrcan 28506 nvadd4 28507 nvscl 28508 nvsid 28509 nvsass 28510 nvdi 28512 nvdir 28513 nv2 28514 nvzcl 28516 nv0rid 28517 nv0lid 28518 nv0 28519 nvsz 28520 nvinv 28521 nvinvfval 28522 nvmval 28524 nvmfval 28526 nvnnncan1 28529 nvnegneg 28531 nvrinv 28533 nvlinv 28534 nvaddsub 28537 cnnvba 28561 sspba 28609 isph 28704 phpar 28706 ip0i 28707 ipdirilem 28711 hhba 29049 hhssabloilem 29143 hhshsslem1 29149 |
Copyright terms: Public domain | W3C validator |