![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version |
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bafval.1 | β’ π = (BaseSetβπ) |
bafval.2 | β’ πΊ = ( +π£ βπ) |
Ref | Expression |
---|---|
bafval | β’ π = ran πΊ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . . 5 β’ (π’ = π β ( +π£ βπ’) = ( +π£ βπ)) | |
2 | 1 | rneqd 5936 | . . . 4 β’ (π’ = π β ran ( +π£ βπ’) = ran ( +π£ βπ)) |
3 | df-ba 30116 | . . . 4 β’ BaseSet = (π’ β V β¦ ran ( +π£ βπ’)) | |
4 | fvex 6903 | . . . . 5 β’ ( +π£ βπ) β V | |
5 | 4 | rnex 7905 | . . . 4 β’ ran ( +π£ βπ) β V |
6 | 2, 3, 5 | fvmpt 6997 | . . 3 β’ (π β V β (BaseSetβπ) = ran ( +π£ βπ)) |
7 | rn0 5924 | . . . . 5 β’ ran β = β | |
8 | 7 | eqcomi 2739 | . . . 4 β’ β = ran β |
9 | fvprc 6882 | . . . 4 β’ (Β¬ π β V β (BaseSetβπ) = β ) | |
10 | fvprc 6882 | . . . . 5 β’ (Β¬ π β V β ( +π£ βπ) = β ) | |
11 | 10 | rneqd 5936 | . . . 4 β’ (Β¬ π β V β ran ( +π£ βπ) = ran β ) |
12 | 8, 9, 11 | 3eqtr4a 2796 | . . 3 β’ (Β¬ π β V β (BaseSetβπ) = ran ( +π£ βπ)) |
13 | 6, 12 | pm2.61i 182 | . 2 β’ (BaseSetβπ) = ran ( +π£ βπ) |
14 | bafval.1 | . 2 β’ π = (BaseSetβπ) | |
15 | bafval.2 | . . 3 β’ πΊ = ( +π£ βπ) | |
16 | 15 | rneqi 5935 | . 2 β’ ran πΊ = ran ( +π£ βπ) |
17 | 13, 14, 16 | 3eqtr4i 2768 | 1 β’ π = ran πΊ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 ran crn 5676 βcfv 6542 +π£ cpv 30105 BaseSetcba 30106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-ba 30116 |
This theorem is referenced by: nvi 30134 nvgf 30138 nvsf 30139 nvgcl 30140 nvcom 30141 nvass 30142 nvadd32 30143 nvrcan 30144 nvadd4 30145 nvscl 30146 nvsid 30147 nvsass 30148 nvdi 30150 nvdir 30151 nv2 30152 nvzcl 30154 nv0rid 30155 nv0lid 30156 nv0 30157 nvsz 30158 nvinv 30159 nvinvfval 30160 nvmval 30162 nvmfval 30164 nvnnncan1 30167 nvnegneg 30169 nvrinv 30171 nvlinv 30172 nvaddsub 30175 cnnvba 30199 sspba 30247 isph 30342 phpar 30344 ip0i 30345 ipdirilem 30349 hhba 30687 hhssabloilem 30781 hhshsslem1 30787 |
Copyright terms: Public domain | W3C validator |