MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bafval Structured version   Visualization version   GIF version

Theorem bafval 30566
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bafval.1 𝑋 = (BaseSet‘𝑈)
bafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
bafval 𝑋 = ran 𝐺

Proof of Theorem bafval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . 5 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
21rneqd 5884 . . . 4 (𝑢 = 𝑈 → ran ( +𝑣𝑢) = ran ( +𝑣𝑈))
3 df-ba 30558 . . . 4 BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣𝑢))
4 fvex 6839 . . . . 5 ( +𝑣𝑈) ∈ V
54rnex 7850 . . . 4 ran ( +𝑣𝑈) ∈ V
62, 3, 5fvmpt 6934 . . 3 (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
7 rn0 5872 . . . . 5 ran ∅ = ∅
87eqcomi 2738 . . . 4 ∅ = ran ∅
9 fvprc 6818 . . . 4 𝑈 ∈ V → (BaseSet‘𝑈) = ∅)
10 fvprc 6818 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
1110rneqd 5884 . . . 4 𝑈 ∈ V → ran ( +𝑣𝑈) = ran ∅)
128, 9, 113eqtr4a 2790 . . 3 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
136, 12pm2.61i 182 . 2 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
14 bafval.1 . 2 𝑋 = (BaseSet‘𝑈)
15 bafval.2 . . 3 𝐺 = ( +𝑣𝑈)
1615rneqi 5883 . 2 ran 𝐺 = ran ( +𝑣𝑈)
1713, 14, 163eqtr4i 2762 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  ran crn 5624  cfv 6486   +𝑣 cpv 30547  BaseSetcba 30548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ba 30558
This theorem is referenced by:  nvi  30576  nvgf  30580  nvsf  30581  nvgcl  30582  nvcom  30583  nvass  30584  nvadd32  30585  nvrcan  30586  nvadd4  30587  nvscl  30588  nvsid  30589  nvsass  30590  nvdi  30592  nvdir  30593  nv2  30594  nvzcl  30596  nv0rid  30597  nv0lid  30598  nv0  30599  nvsz  30600  nvinv  30601  nvinvfval  30602  nvmval  30604  nvmfval  30606  nvnnncan1  30609  nvnegneg  30611  nvrinv  30613  nvlinv  30614  nvaddsub  30617  cnnvba  30641  sspba  30689  isph  30784  phpar  30786  ip0i  30787  ipdirilem  30791  hhba  31129  hhssabloilem  31223  hhshsslem1  31229
  Copyright terms: Public domain W3C validator