| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| bafval | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
| 2 | 1 | rneqd 5905 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
| 3 | df-ba 30532 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
| 4 | fvex 6874 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
| 5 | 4 | rnex 7889 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6971 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 7 | rn0 5892 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2739 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
| 10 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | 10 | rneqd 5905 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 16 | 15 | rneqi 5904 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
| 17 | 13, 14, 16 | 3eqtr4i 2763 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ran crn 5642 ‘cfv 6514 +𝑣 cpv 30521 BaseSetcba 30522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ba 30532 |
| This theorem is referenced by: nvi 30550 nvgf 30554 nvsf 30555 nvgcl 30556 nvcom 30557 nvass 30558 nvadd32 30559 nvrcan 30560 nvadd4 30561 nvscl 30562 nvsid 30563 nvsass 30564 nvdi 30566 nvdir 30567 nv2 30568 nvzcl 30570 nv0rid 30571 nv0lid 30572 nv0 30573 nvsz 30574 nvinv 30575 nvinvfval 30576 nvmval 30578 nvmfval 30580 nvnnncan1 30583 nvnegneg 30585 nvrinv 30587 nvlinv 30588 nvaddsub 30591 cnnvba 30615 sspba 30663 isph 30758 phpar 30760 ip0i 30761 ipdirilem 30765 hhba 31103 hhssabloilem 31197 hhshsslem1 31203 |
| Copyright terms: Public domain | W3C validator |