MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bafval Structured version   Visualization version   GIF version

Theorem bafval 30633
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bafval.1 𝑋 = (BaseSet‘𝑈)
bafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
bafval 𝑋 = ran 𝐺

Proof of Theorem bafval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
21rneqd 5952 . . . 4 (𝑢 = 𝑈 → ran ( +𝑣𝑢) = ran ( +𝑣𝑈))
3 df-ba 30625 . . . 4 BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣𝑢))
4 fvex 6920 . . . . 5 ( +𝑣𝑈) ∈ V
54rnex 7933 . . . 4 ran ( +𝑣𝑈) ∈ V
62, 3, 5fvmpt 7016 . . 3 (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
7 rn0 5939 . . . . 5 ran ∅ = ∅
87eqcomi 2744 . . . 4 ∅ = ran ∅
9 fvprc 6899 . . . 4 𝑈 ∈ V → (BaseSet‘𝑈) = ∅)
10 fvprc 6899 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
1110rneqd 5952 . . . 4 𝑈 ∈ V → ran ( +𝑣𝑈) = ran ∅)
128, 9, 113eqtr4a 2801 . . 3 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
136, 12pm2.61i 182 . 2 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
14 bafval.1 . 2 𝑋 = (BaseSet‘𝑈)
15 bafval.2 . . 3 𝐺 = ( +𝑣𝑈)
1615rneqi 5951 . 2 ran 𝐺 = ran ( +𝑣𝑈)
1713, 14, 163eqtr4i 2773 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  ran crn 5690  cfv 6563   +𝑣 cpv 30614  BaseSetcba 30615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ba 30625
This theorem is referenced by:  nvi  30643  nvgf  30647  nvsf  30648  nvgcl  30649  nvcom  30650  nvass  30651  nvadd32  30652  nvrcan  30653  nvadd4  30654  nvscl  30655  nvsid  30656  nvsass  30657  nvdi  30659  nvdir  30660  nv2  30661  nvzcl  30663  nv0rid  30664  nv0lid  30665  nv0  30666  nvsz  30667  nvinv  30668  nvinvfval  30669  nvmval  30671  nvmfval  30673  nvnnncan1  30676  nvnegneg  30678  nvrinv  30680  nvlinv  30681  nvaddsub  30684  cnnvba  30708  sspba  30756  isph  30851  phpar  30853  ip0i  30854  ipdirilem  30858  hhba  31196  hhssabloilem  31290  hhshsslem1  31296
  Copyright terms: Public domain W3C validator