![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version |
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
bafval | ⊢ 𝑋 = ran 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
2 | 1 | rneqd 5963 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
3 | df-ba 30628 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
4 | fvex 6933 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
5 | 4 | rnex 7950 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
6 | 2, 3, 5 | fvmpt 7029 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
7 | rn0 5950 | . . . . 5 ⊢ ran ∅ = ∅ | |
8 | 7 | eqcomi 2749 | . . . 4 ⊢ ∅ = ran ∅ |
9 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
10 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | 10 | rneqd 5963 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
12 | 8, 9, 11 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
16 | 15 | rneqi 5962 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
17 | 13, 14, 16 | 3eqtr4i 2778 | 1 ⊢ 𝑋 = ran 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ran crn 5701 ‘cfv 6573 +𝑣 cpv 30617 BaseSetcba 30618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-ba 30628 |
This theorem is referenced by: nvi 30646 nvgf 30650 nvsf 30651 nvgcl 30652 nvcom 30653 nvass 30654 nvadd32 30655 nvrcan 30656 nvadd4 30657 nvscl 30658 nvsid 30659 nvsass 30660 nvdi 30662 nvdir 30663 nv2 30664 nvzcl 30666 nv0rid 30667 nv0lid 30668 nv0 30669 nvsz 30670 nvinv 30671 nvinvfval 30672 nvmval 30674 nvmfval 30676 nvnnncan1 30679 nvnegneg 30681 nvrinv 30683 nvlinv 30684 nvaddsub 30687 cnnvba 30711 sspba 30759 isph 30854 phpar 30856 ip0i 30857 ipdirilem 30861 hhba 31199 hhssabloilem 31293 hhshsslem1 31299 |
Copyright terms: Public domain | W3C validator |