MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bafval Structured version   Visualization version   GIF version

Theorem bafval 30540
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bafval.1 𝑋 = (BaseSet‘𝑈)
bafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
bafval 𝑋 = ran 𝐺

Proof of Theorem bafval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
21rneqd 5905 . . . 4 (𝑢 = 𝑈 → ran ( +𝑣𝑢) = ran ( +𝑣𝑈))
3 df-ba 30532 . . . 4 BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣𝑢))
4 fvex 6874 . . . . 5 ( +𝑣𝑈) ∈ V
54rnex 7889 . . . 4 ran ( +𝑣𝑈) ∈ V
62, 3, 5fvmpt 6971 . . 3 (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
7 rn0 5892 . . . . 5 ran ∅ = ∅
87eqcomi 2739 . . . 4 ∅ = ran ∅
9 fvprc 6853 . . . 4 𝑈 ∈ V → (BaseSet‘𝑈) = ∅)
10 fvprc 6853 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
1110rneqd 5905 . . . 4 𝑈 ∈ V → ran ( +𝑣𝑈) = ran ∅)
128, 9, 113eqtr4a 2791 . . 3 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
136, 12pm2.61i 182 . 2 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
14 bafval.1 . 2 𝑋 = (BaseSet‘𝑈)
15 bafval.2 . . 3 𝐺 = ( +𝑣𝑈)
1615rneqi 5904 . 2 ran 𝐺 = ran ( +𝑣𝑈)
1713, 14, 163eqtr4i 2763 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ran crn 5642  cfv 6514   +𝑣 cpv 30521  BaseSetcba 30522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ba 30532
This theorem is referenced by:  nvi  30550  nvgf  30554  nvsf  30555  nvgcl  30556  nvcom  30557  nvass  30558  nvadd32  30559  nvrcan  30560  nvadd4  30561  nvscl  30562  nvsid  30563  nvsass  30564  nvdi  30566  nvdir  30567  nv2  30568  nvzcl  30570  nv0rid  30571  nv0lid  30572  nv0  30573  nvsz  30574  nvinv  30575  nvinvfval  30576  nvmval  30578  nvmfval  30580  nvnnncan1  30583  nvnegneg  30585  nvrinv  30587  nvlinv  30588  nvaddsub  30591  cnnvba  30615  sspba  30663  isph  30758  phpar  30760  ip0i  30761  ipdirilem  30765  hhba  31103  hhssabloilem  31197  hhshsslem1  31203
  Copyright terms: Public domain W3C validator