| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| bafval | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
| 2 | 1 | rneqd 5902 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
| 3 | df-ba 30525 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
| 4 | fvex 6871 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
| 5 | 4 | rnex 7886 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6968 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 7 | rn0 5889 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
| 10 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | 10 | rneqd 5902 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 16 | 15 | rneqi 5901 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
| 17 | 13, 14, 16 | 3eqtr4i 2762 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ran crn 5639 ‘cfv 6511 +𝑣 cpv 30514 BaseSetcba 30515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-ba 30525 |
| This theorem is referenced by: nvi 30543 nvgf 30547 nvsf 30548 nvgcl 30549 nvcom 30550 nvass 30551 nvadd32 30552 nvrcan 30553 nvadd4 30554 nvscl 30555 nvsid 30556 nvsass 30557 nvdi 30559 nvdir 30560 nv2 30561 nvzcl 30563 nv0rid 30564 nv0lid 30565 nv0 30566 nvsz 30567 nvinv 30568 nvinvfval 30569 nvmval 30571 nvmfval 30573 nvnnncan1 30576 nvnegneg 30578 nvrinv 30580 nvlinv 30581 nvaddsub 30584 cnnvba 30608 sspba 30656 isph 30751 phpar 30753 ip0i 30754 ipdirilem 30758 hhba 31096 hhssabloilem 31190 hhshsslem1 31196 |
| Copyright terms: Public domain | W3C validator |