Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version |
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
bafval | ⊢ 𝑋 = ran 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
2 | 1 | rneqd 5847 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
3 | df-ba 28958 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
4 | fvex 6787 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
5 | 4 | rnex 7759 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
6 | 2, 3, 5 | fvmpt 6875 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
7 | rn0 5835 | . . . . 5 ⊢ ran ∅ = ∅ | |
8 | 7 | eqcomi 2747 | . . . 4 ⊢ ∅ = ran ∅ |
9 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
10 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | 10 | rneqd 5847 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
12 | 8, 9, 11 | 3eqtr4a 2804 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
16 | 15 | rneqi 5846 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
17 | 13, 14, 16 | 3eqtr4i 2776 | 1 ⊢ 𝑋 = ran 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ran crn 5590 ‘cfv 6433 +𝑣 cpv 28947 BaseSetcba 28948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ba 28958 |
This theorem is referenced by: nvi 28976 nvgf 28980 nvsf 28981 nvgcl 28982 nvcom 28983 nvass 28984 nvadd32 28985 nvrcan 28986 nvadd4 28987 nvscl 28988 nvsid 28989 nvsass 28990 nvdi 28992 nvdir 28993 nv2 28994 nvzcl 28996 nv0rid 28997 nv0lid 28998 nv0 28999 nvsz 29000 nvinv 29001 nvinvfval 29002 nvmval 29004 nvmfval 29006 nvnnncan1 29009 nvnegneg 29011 nvrinv 29013 nvlinv 29014 nvaddsub 29017 cnnvba 29041 sspba 29089 isph 29184 phpar 29186 ip0i 29187 ipdirilem 29191 hhba 29529 hhssabloilem 29623 hhshsslem1 29629 |
Copyright terms: Public domain | W3C validator |