| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| bafval | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
| 2 | 1 | rneqd 5918 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
| 3 | df-ba 30577 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
| 4 | fvex 6889 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
| 5 | 4 | rnex 7906 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6986 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 7 | rn0 5905 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2744 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
| 10 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | 10 | rneqd 5918 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 16 | 15 | rneqi 5917 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
| 17 | 13, 14, 16 | 3eqtr4i 2768 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ran crn 5655 ‘cfv 6531 +𝑣 cpv 30566 BaseSetcba 30567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-ba 30577 |
| This theorem is referenced by: nvi 30595 nvgf 30599 nvsf 30600 nvgcl 30601 nvcom 30602 nvass 30603 nvadd32 30604 nvrcan 30605 nvadd4 30606 nvscl 30607 nvsid 30608 nvsass 30609 nvdi 30611 nvdir 30612 nv2 30613 nvzcl 30615 nv0rid 30616 nv0lid 30617 nv0 30618 nvsz 30619 nvinv 30620 nvinvfval 30621 nvmval 30623 nvmfval 30625 nvnnncan1 30628 nvnegneg 30630 nvrinv 30632 nvlinv 30633 nvaddsub 30636 cnnvba 30660 sspba 30708 isph 30803 phpar 30805 ip0i 30806 ipdirilem 30810 hhba 31148 hhssabloilem 31242 hhshsslem1 31248 |
| Copyright terms: Public domain | W3C validator |