| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bafval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| bafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| bafval | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . . 5 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
| 2 | 1 | rneqd 5882 | . . . 4 ⊢ (𝑢 = 𝑈 → ran ( +𝑣 ‘𝑢) = ran ( +𝑣 ‘𝑈)) |
| 3 | df-ba 30578 | . . . 4 ⊢ BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣 ‘𝑢)) | |
| 4 | fvex 6841 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) ∈ V | |
| 5 | 4 | rnex 7846 | . . . 4 ⊢ ran ( +𝑣 ‘𝑈) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6935 | . . 3 ⊢ (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 7 | rn0 5870 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2742 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ∅) | |
| 10 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | 10 | rneqd 5882 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ran ( +𝑣 ‘𝑈) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 14 | bafval.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 15 | bafval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 16 | 15 | rneqi 5881 | . 2 ⊢ ran 𝐺 = ran ( +𝑣 ‘𝑈) |
| 17 | 13, 14, 16 | 3eqtr4i 2766 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ran crn 5620 ‘cfv 6486 +𝑣 cpv 30567 BaseSetcba 30568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-ba 30578 |
| This theorem is referenced by: nvi 30596 nvgf 30600 nvsf 30601 nvgcl 30602 nvcom 30603 nvass 30604 nvadd32 30605 nvrcan 30606 nvadd4 30607 nvscl 30608 nvsid 30609 nvsass 30610 nvdi 30612 nvdir 30613 nv2 30614 nvzcl 30616 nv0rid 30617 nv0lid 30618 nv0 30619 nvsz 30620 nvinv 30621 nvinvfval 30622 nvmval 30624 nvmfval 30626 nvnnncan1 30629 nvnegneg 30631 nvrinv 30633 nvlinv 30634 nvaddsub 30637 cnnvba 30661 sspba 30709 isph 30804 phpar 30806 ip0i 30807 ipdirilem 30811 hhba 31149 hhssabloilem 31243 hhshsslem1 31249 |
| Copyright terms: Public domain | W3C validator |