MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrcan Structured version   Visualization version   GIF version

Theorem nvrcan 29035
Description: Right cancellation law for vector addition. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgcl.1 𝑋 = (BaseSet‘𝑈)
nvgcl.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvrcan ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem nvrcan
StepHypRef Expression
1 nvgcl.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvgrp 29028 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvgcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 29015 . . 3 𝑋 = ran 𝐺
54grporcan 28929 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
62, 5sylan 581 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  GrpOpcgr 28900  NrmCVeccnv 28995   +𝑣 cpv 28996  BaseSetcba 28997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-1st 7863  df-2nd 7864  df-grpo 28904  df-gid 28905  df-ablo 28956  df-vc 28970  df-nv 29003  df-va 29006  df-ba 29007  df-sm 29008  df-0v 29009  df-nmcv 29011
This theorem is referenced by:  nvmeq0  29069  imsmetlem  29101
  Copyright terms: Public domain W3C validator