MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvpncan2 Structured version   Visualization version   GIF version

Theorem nvpncan2 29009
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvpncan2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵)

Proof of Theorem nvpncan2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 nvpncan2.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . 4 𝐺 = ( +𝑣𝑈)
42, 3nvgcl 28976 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
5 simp2 1136 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
6 eqid 2740 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
82, 3, 6, 7nvmval 28998 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)))
91, 4, 5, 8syl3anc 1370 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)))
10 simp3 1137 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
11 neg1cn 12085 . . . . . 6 -1 ∈ ℂ
122, 6nvscl 28982 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
1311, 12mp3an2 1448 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
14133adant3 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
152, 3nvadd32 28979 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵))
161, 5, 10, 14, 15syl13anc 1371 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵))
17 eqid 2740 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
182, 3, 6, 17nvrinv 29007 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
19183adant3 1131 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
2019oveq1d 7284 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵) = ((0vec𝑈)𝐺𝐵))
212, 3, 17nv0lid 28992 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝐺𝐵) = 𝐵)
22213adant2 1130 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((0vec𝑈)𝐺𝐵) = 𝐵)
2320, 22eqtrd 2780 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵) = 𝐵)
2416, 23eqtrd 2780 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = 𝐵)
259, 24eqtrd 2780 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1542  wcel 2110  cfv 6431  (class class class)co 7269  cc 10868  1c1 10871  -cneg 11204  NrmCVeccnv 28940   +𝑣 cpv 28941  BaseSetcba 28942   ·𝑠OLD cns 28943  0veccn0v 28944  𝑣 cnsb 28945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7822  df-2nd 7823  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-ltxr 11013  df-sub 11205  df-neg 11206  df-grpo 28849  df-gid 28850  df-ginv 28851  df-gdiv 28852  df-ablo 28901  df-vc 28915  df-nv 28948  df-va 28951  df-ba 28952  df-sm 28953  df-0v 28954  df-vs 28955  df-nmcv 28956
This theorem is referenced by:  nvpncan  29010  blocnilem  29160  ubthlem2  29227
  Copyright terms: Public domain W3C validator