![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvpncan2 | Structured version Visualization version GIF version |
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvpncan2.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvpncan2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑈 ∈ NrmCVec) | |
2 | nvpncan2.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvpncan2.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 2, 3 | nvgcl 30522 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
5 | simp2 1134 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
6 | eqid 2725 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | nvpncan2.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
8 | 2, 3, 6, 7 | nvmval 30544 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
9 | 1, 4, 5, 8 | syl3anc 1368 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
10 | simp3 1135 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
11 | neg1cn 12364 | . . . . . 6 ⊢ -1 ∈ ℂ | |
12 | 2, 6 | nvscl 30528 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
13 | 11, 12 | mp3an2 1445 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
14 | 13 | 3adant3 1129 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
15 | 2, 3 | nvadd32 30525 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
16 | 1, 5, 10, 14, 15 | syl13anc 1369 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
17 | eqid 2725 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
18 | 2, 3, 6, 17 | nvrinv 30553 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
19 | 18 | 3adant3 1129 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
20 | 19 | oveq1d 7434 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = ((0vec‘𝑈)𝐺𝐵)) |
21 | 2, 3, 17 | nv0lid 30538 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
22 | 21 | 3adant2 1128 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
23 | 20, 22 | eqtrd 2765 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = 𝐵) |
24 | 16, 23 | eqtrd 2765 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = 𝐵) |
25 | 9, 24 | eqtrd 2765 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 1c1 11146 -cneg 11482 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑠OLD cns 30489 0veccn0v 30490 −𝑣 cnsb 30491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-ltxr 11290 df-sub 11483 df-neg 11484 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 |
This theorem is referenced by: nvpncan 30556 blocnilem 30706 ubthlem2 30773 |
Copyright terms: Public domain | W3C validator |