MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvpncan2 Structured version   Visualization version   GIF version

Theorem nvpncan2 28436
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvpncan2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵)

Proof of Theorem nvpncan2
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 nvpncan2.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . 4 𝐺 = ( +𝑣𝑈)
42, 3nvgcl 28403 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
5 simp2 1134 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
6 eqid 2798 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
82, 3, 6, 7nvmval 28425 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)))
91, 4, 5, 8syl3anc 1368 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)))
10 simp3 1135 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
11 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
122, 6nvscl 28409 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
1311, 12mp3an2 1446 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
14133adant3 1129 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
152, 3nvadd32 28406 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵))
161, 5, 10, 14, 15syl13anc 1369 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵))
17 eqid 2798 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
182, 3, 6, 17nvrinv 28434 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
19183adant3 1129 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
2019oveq1d 7150 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵) = ((0vec𝑈)𝐺𝐵))
212, 3, 17nv0lid 28419 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝐺𝐵) = 𝐵)
22213adant2 1128 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((0vec𝑈)𝐺𝐵) = 𝐵)
2320, 22eqtrd 2833 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐴))𝐺𝐵) = 𝐵)
2416, 23eqtrd 2833 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)𝐴)) = 𝐵)
259, 24eqtrd 2833 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527  -cneg 10860  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  0veccn0v 28371  𝑣 cnsb 28372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383
This theorem is referenced by:  nvpncan  28437  blocnilem  28587  ubthlem2  28654
  Copyright terms: Public domain W3C validator