![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvpncan2 | Structured version Visualization version GIF version |
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvpncan2.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvpncan2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1172 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑈 ∈ NrmCVec) | |
2 | nvpncan2.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvpncan2.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 2, 3 | nvgcl 28030 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
5 | simp2 1173 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
6 | eqid 2825 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | nvpncan2.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
8 | 2, 3, 6, 7 | nvmval 28052 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
9 | 1, 4, 5, 8 | syl3anc 1496 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
10 | simp3 1174 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
11 | neg1cn 11472 | . . . . . 6 ⊢ -1 ∈ ℂ | |
12 | 2, 6 | nvscl 28036 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
13 | 11, 12 | mp3an2 1579 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
14 | 13 | 3adant3 1168 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
15 | 2, 3 | nvadd32 28033 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
16 | 1, 5, 10, 14, 15 | syl13anc 1497 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
17 | eqid 2825 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
18 | 2, 3, 6, 17 | nvrinv 28061 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
19 | 18 | 3adant3 1168 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
20 | 19 | oveq1d 6920 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = ((0vec‘𝑈)𝐺𝐵)) |
21 | 2, 3, 17 | nv0lid 28046 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
22 | 21 | 3adant2 1167 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
23 | 20, 22 | eqtrd 2861 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = 𝐵) |
24 | 16, 23 | eqtrd 2861 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = 𝐵) |
25 | 9, 24 | eqtrd 2861 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 1c1 10253 -cneg 10586 NrmCVeccnv 27994 +𝑣 cpv 27995 BaseSetcba 27996 ·𝑠OLD cns 27997 0veccn0v 27998 −𝑣 cnsb 27999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-ltxr 10396 df-sub 10587 df-neg 10588 df-grpo 27903 df-gid 27904 df-ginv 27905 df-gdiv 27906 df-ablo 27955 df-vc 27969 df-nv 28002 df-va 28005 df-ba 28006 df-sm 28007 df-0v 28008 df-vs 28009 df-nmcv 28010 |
This theorem is referenced by: nvpncan 28064 blocnilem 28214 ubthlem2 28282 |
Copyright terms: Public domain | W3C validator |