Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvpncan2 | Structured version Visualization version GIF version |
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvpncan2.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvpncan2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑈 ∈ NrmCVec) | |
2 | nvpncan2.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvpncan2.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 2, 3 | nvgcl 28982 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
5 | simp2 1136 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
6 | eqid 2738 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | nvpncan2.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
8 | 2, 3, 6, 7 | nvmval 29004 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
9 | 1, 4, 5, 8 | syl3anc 1370 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))) |
10 | simp3 1137 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
11 | neg1cn 12087 | . . . . . 6 ⊢ -1 ∈ ℂ | |
12 | 2, 6 | nvscl 28988 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
13 | 11, 12 | mp3an2 1448 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
14 | 13 | 3adant3 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
15 | 2, 3 | nvadd32 28985 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
16 | 1, 5, 10, 14, 15 | syl13anc 1371 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵)) |
17 | eqid 2738 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
18 | 2, 3, 6, 17 | nvrinv 29013 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
19 | 18 | 3adant3 1131 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
20 | 19 | oveq1d 7290 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = ((0vec‘𝑈)𝐺𝐵)) |
21 | 2, 3, 17 | nv0lid 28998 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
22 | 21 | 3adant2 1130 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝐺𝐵) = 𝐵) |
23 | 20, 22 | eqtrd 2778 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺(-1( ·𝑠OLD ‘𝑈)𝐴))𝐺𝐵) = 𝐵) |
24 | 16, 23 | eqtrd 2778 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD ‘𝑈)𝐴)) = 𝐵) |
25 | 9, 24 | eqtrd 2778 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 -cneg 11206 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 0veccn0v 28950 −𝑣 cnsb 28951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 |
This theorem is referenced by: nvpncan 29016 blocnilem 29166 ubthlem2 29233 |
Copyright terms: Public domain | W3C validator |