MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvm Structured version   Visualization version   GIF version

Theorem nvm 30587
Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvm.1 𝑋 = (BaseSet‘𝑈)
nvm.2 𝐺 = ( +𝑣𝑈)
nvm.3 𝑀 = ( −𝑣𝑈)
nvm.6 𝑁 = ( /𝑔𝐺)
Assertion
Ref Expression
nvm ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵))

Proof of Theorem nvm
StepHypRef Expression
1 nvm.2 . . . . 5 𝐺 = ( +𝑣𝑈)
2 nvm.3 . . . . 5 𝑀 = ( −𝑣𝑈)
31, 2vsfval 30579 . . . 4 𝑀 = ( /𝑔𝐺)
4 nvm.6 . . . 4 𝑁 = ( /𝑔𝐺)
53, 4eqtr4i 2760 . . 3 𝑀 = 𝑁
65oveqi 7425 . 2 (𝐴𝑀𝐵) = (𝐴𝑁𝐵)
76a1i 11 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6540  (class class class)co 7412   /𝑔 cgs 30438  NrmCVeccnv 30530   +𝑣 cpv 30531  BaseSetcba 30532  𝑣 cnsb 30535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-grpo 30439  df-gdiv 30442  df-va 30541  df-vs 30545
This theorem is referenced by:  nvmval  30588
  Copyright terms: Public domain W3C validator