| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvm | Structured version Visualization version GIF version | ||
| Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvm.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvm.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvm.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| nvm.6 | ⊢ 𝑁 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| nvm | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvm.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | nvm.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 3 | 1, 2 | vsfval 30579 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| 4 | nvm.6 | . . . 4 ⊢ 𝑁 = ( /𝑔 ‘𝐺) | |
| 5 | 3, 4 | eqtr4i 2760 | . . 3 ⊢ 𝑀 = 𝑁 |
| 6 | 5 | oveqi 7425 | . 2 ⊢ (𝐴𝑀𝐵) = (𝐴𝑁𝐵) |
| 7 | 6 | a1i 11 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7412 /𝑔 cgs 30438 NrmCVeccnv 30530 +𝑣 cpv 30531 BaseSetcba 30532 −𝑣 cnsb 30535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-grpo 30439 df-gdiv 30442 df-va 30541 df-vs 30545 |
| This theorem is referenced by: nvmval 30588 |
| Copyright terms: Public domain | W3C validator |