![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvm | Structured version Visualization version GIF version |
Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvm.1 | β’ π = (BaseSetβπ) |
nvm.2 | β’ πΊ = ( +π£ βπ) |
nvm.3 | β’ π = ( βπ£ βπ) |
nvm.6 | β’ π = ( /π βπΊ) |
Ref | Expression |
---|---|
nvm | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) = (π΄ππ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvm.2 | . . . . 5 β’ πΊ = ( +π£ βπ) | |
2 | nvm.3 | . . . . 5 β’ π = ( βπ£ βπ) | |
3 | 1, 2 | vsfval 30154 | . . . 4 β’ π = ( /π βπΊ) |
4 | nvm.6 | . . . 4 β’ π = ( /π βπΊ) | |
5 | 3, 4 | eqtr4i 2762 | . . 3 β’ π = π |
6 | 5 | oveqi 7425 | . 2 β’ (π΄ππ΅) = (π΄ππ΅) |
7 | 6 | a1i 11 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) = (π΄ππ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 /π cgs 30013 NrmCVeccnv 30105 +π£ cpv 30106 BaseSetcba 30107 βπ£ cnsb 30110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-grpo 30014 df-gdiv 30017 df-va 30116 df-vs 30120 |
This theorem is referenced by: nvmval 30163 |
Copyright terms: Public domain | W3C validator |