Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvm | Structured version Visualization version GIF version |
Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvm.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvm.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvm.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
nvm.6 | ⊢ 𝑁 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
nvm | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvm.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | nvm.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
3 | 1, 2 | vsfval 28871 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
4 | nvm.6 | . . . 4 ⊢ 𝑁 = ( /𝑔 ‘𝐺) | |
5 | 3, 4 | eqtr4i 2770 | . . 3 ⊢ 𝑀 = 𝑁 |
6 | 5 | oveqi 7265 | . 2 ⊢ (𝐴𝑀𝐵) = (𝐴𝑁𝐵) |
7 | 6 | a1i 11 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ‘cfv 6415 (class class class)co 7252 /𝑔 cgs 28730 NrmCVeccnv 28822 +𝑣 cpv 28823 BaseSetcba 28824 −𝑣 cnsb 28827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-1st 7801 df-2nd 7802 df-grpo 28731 df-gdiv 28734 df-va 28833 df-vs 28837 |
This theorem is referenced by: nvmval 28880 |
Copyright terms: Public domain | W3C validator |