MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvm Structured version   Visualization version   GIF version

Theorem nvm 30162
Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvm.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvm.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
nvm.3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
nvm.6 𝑁 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
nvm ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝑀𝐡) = (𝐴𝑁𝐡))

Proof of Theorem nvm
StepHypRef Expression
1 nvm.2 . . . . 5 𝐺 = ( +𝑣 β€˜π‘ˆ)
2 nvm.3 . . . . 5 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
31, 2vsfval 30154 . . . 4 𝑀 = ( /𝑔 β€˜πΊ)
4 nvm.6 . . . 4 𝑁 = ( /𝑔 β€˜πΊ)
53, 4eqtr4i 2762 . . 3 𝑀 = 𝑁
65oveqi 7425 . 2 (𝐴𝑀𝐡) = (𝐴𝑁𝐡)
76a1i 11 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝑀𝐡) = (𝐴𝑁𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412   /𝑔 cgs 30013  NrmCVeccnv 30105   +𝑣 cpv 30106  BaseSetcba 30107   βˆ’π‘£ cnsb 30110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-grpo 30014  df-gdiv 30017  df-va 30116  df-vs 30120
This theorem is referenced by:  nvmval  30163
  Copyright terms: Public domain W3C validator