| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvm | Structured version Visualization version GIF version | ||
| Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvm.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvm.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvm.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| nvm.6 | ⊢ 𝑁 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| nvm | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvm.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | nvm.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 3 | 1, 2 | vsfval 30569 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| 4 | nvm.6 | . . . 4 ⊢ 𝑁 = ( /𝑔 ‘𝐺) | |
| 5 | 3, 4 | eqtr4i 2756 | . . 3 ⊢ 𝑀 = 𝑁 |
| 6 | 5 | oveqi 7407 | . 2 ⊢ (𝐴𝑀𝐵) = (𝐴𝑁𝐵) |
| 7 | 6 | a1i 11 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 /𝑔 cgs 30428 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 −𝑣 cnsb 30525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-grpo 30429 df-gdiv 30432 df-va 30531 df-vs 30535 |
| This theorem is referenced by: nvmval 30578 |
| Copyright terms: Public domain | W3C validator |