MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmval Structured version   Visualization version   GIF version

Theorem nvmval 28110
Description: Value of vector subtraction on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵)))

Proof of Theorem nvmval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28085 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28072 . . . 4 𝑋 = ran 𝐺
5 eqid 2795 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 eqid 2795 . . . 4 ( /𝑔𝐺) = ( /𝑔𝐺)
74, 5, 6grpodivval 28003 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴( /𝑔𝐺)𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
82, 7syl3an1 1156 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( /𝑔𝐺)𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
9 nvmval.3 . . 3 𝑀 = ( −𝑣𝑈)
103, 1, 9, 6nvm 28109 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( /𝑔𝐺)𝐵))
11 nvmval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
123, 1, 11, 5nvinv 28107 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) = ((inv‘𝐺)‘𝐵))
13123adant2 1124 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) = ((inv‘𝐺)‘𝐵))
1413oveq2d 7032 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
158, 10, 143eqtr4d 2841 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  wcel 2081  cfv 6225  (class class class)co 7016  1c1 10384  -cneg 10718  GrpOpcgr 27957  invcgn 27959   /𝑔 cgs 27960  NrmCVeccnv 28052   +𝑣 cpv 28053  BaseSetcba 28054   ·𝑠OLD cns 28055  𝑣 cnsb 28057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-ltxr 10526  df-sub 10719  df-neg 10720  df-grpo 27961  df-gid 27962  df-ginv 27963  df-gdiv 27964  df-ablo 28013  df-vc 28027  df-nv 28060  df-va 28063  df-ba 28064  df-sm 28065  df-0v 28066  df-vs 28067  df-nmcv 28068
This theorem is referenced by:  nvmval2  28111  nvmdi  28116  nvpncan2  28121  nvaddsub4  28125  nvmtri  28139  imsdval2  28155  nvnd  28156  ipval3  28177  sspmval  28201  isph  28290  dipsubdir  28316
  Copyright terms: Public domain W3C validator