MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmval Structured version   Visualization version   GIF version

Theorem nvmval 28525
Description: Value of vector subtraction on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵)))

Proof of Theorem nvmval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28500 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28487 . . . 4 𝑋 = ran 𝐺
5 eqid 2759 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 eqid 2759 . . . 4 ( /𝑔𝐺) = ( /𝑔𝐺)
74, 5, 6grpodivval 28418 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴( /𝑔𝐺)𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
82, 7syl3an1 1161 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( /𝑔𝐺)𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
9 nvmval.3 . . 3 𝑀 = ( −𝑣𝑈)
103, 1, 9, 6nvm 28524 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( /𝑔𝐺)𝐵))
11 nvmval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
123, 1, 11, 5nvinv 28522 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) = ((inv‘𝐺)‘𝐵))
13123adant2 1129 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) = ((inv‘𝐺)‘𝐵))
1413oveq2d 7167 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
158, 10, 143eqtr4d 2804 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2112  cfv 6336  (class class class)co 7151  1c1 10577  -cneg 10910  GrpOpcgr 28372  invcgn 28374   /𝑔 cgs 28375  NrmCVeccnv 28467   +𝑣 cpv 28468  BaseSetcba 28469   ·𝑠OLD cns 28470  𝑣 cnsb 28472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-ltxr 10719  df-sub 10911  df-neg 10912  df-grpo 28376  df-gid 28377  df-ginv 28378  df-gdiv 28379  df-ablo 28428  df-vc 28442  df-nv 28475  df-va 28478  df-ba 28479  df-sm 28480  df-0v 28481  df-vs 28482  df-nmcv 28483
This theorem is referenced by:  nvmval2  28526  nvmdi  28531  nvpncan2  28536  nvaddsub4  28540  nvmtri  28554  imsdval2  28570  nvnd  28571  ipval3  28592  sspmval  28616  isph  28705  dipsubdir  28731
  Copyright terms: Public domain W3C validator