![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1le | Structured version Visualization version GIF version |
Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1le.1 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
o1le.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
o1le.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
o1le.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
o1le.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) |
Ref | Expression |
---|---|
o1le | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1le.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
2 | o1le.2 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | |
3 | o1le.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
4 | 3, 2 | o1mptrcl 15593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
5 | 4 | lo1o12 15503 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))) |
6 | 2, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)) |
7 | fvexd 6906 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ V) | |
8 | o1le.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
9 | 8 | abscld 15409 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐶) ∈ ℝ) |
10 | o1le.5 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) | |
11 | 1, 6, 7, 9, 10 | lo1le 15624 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1)) |
12 | 8 | lo1o12 15503 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1))) |
13 | 11, 12 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 Vcvv 3470 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 ℂcc 11130 ℝcr 11131 ≤ cle 11273 abscabs 15207 𝑂(1)co1 15456 ≤𝑂(1)clo1 15457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ico 13356 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-o1 15460 df-lo1 15461 |
This theorem is referenced by: vmadivsum 27408 dchrvmasumlem2 27424 dchrvmasumlem3 27425 dchrvmasumiflem2 27428 dchrisum0fno1 27437 dchrisum0re 27439 dchrisum0lem1 27442 dchrisum0lem3 27445 mudivsum 27456 mulog2sumlem2 27461 2vmadivsumlem 27466 selberglem2 27472 selberg2lem 27476 selberg3lem1 27483 selberg4lem1 27486 pntrsumo1 27491 pntrlog2bndlem2 27504 pntrlog2bndlem3 27505 |
Copyright terms: Public domain | W3C validator |