![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1le | Structured version Visualization version GIF version |
Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1le.1 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
o1le.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
o1le.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
o1le.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
o1le.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) |
Ref | Expression |
---|---|
o1le | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1le.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
2 | o1le.2 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | |
3 | o1le.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
4 | 3, 2 | o1mptrcl 15594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
5 | 4 | lo1o12 15504 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))) |
6 | 2, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)) |
7 | fvexd 6907 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ V) | |
8 | o1le.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
9 | 8 | abscld 15410 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐶) ∈ ℝ) |
10 | o1le.5 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) | |
11 | 1, 6, 7, 9, 10 | lo1le 15625 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1)) |
12 | 8 | lo1o12 15504 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1))) |
13 | 11, 12 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 Vcvv 3470 class class class wbr 5143 ↦ cmpt 5226 ‘cfv 6543 ℂcc 11131 ℝcr 11132 ≤ cle 11274 abscabs 15208 𝑂(1)co1 15457 ≤𝑂(1)clo1 15458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-ico 13357 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-o1 15461 df-lo1 15462 |
This theorem is referenced by: vmadivsum 27409 dchrvmasumlem2 27425 dchrvmasumlem3 27426 dchrvmasumiflem2 27429 dchrisum0fno1 27438 dchrisum0re 27440 dchrisum0lem1 27443 dchrisum0lem3 27446 mudivsum 27457 mulog2sumlem2 27462 2vmadivsumlem 27467 selberglem2 27473 selberg2lem 27477 selberg3lem1 27484 selberg4lem1 27487 pntrsumo1 27492 pntrlog2bndlem2 27505 pntrlog2bndlem3 27506 |
Copyright terms: Public domain | W3C validator |