MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsum Structured version   Visualization version   GIF version

Theorem mulogsum 27443
Description: Asymptotic formula for Σ𝑛𝑥, (μ(𝑛) / 𝑛)log(𝑥 / 𝑛) = 𝑂(1). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsum (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem mulogsum
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12959 . . . 4 + ⊆ ℝ
2 ax-1cn 11126 . . . 4 1 ∈ ℂ
3 o1const 15586 . . . 4 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
41, 2, 3mp2an 692 . . 3 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
5 1cnd 11169 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
6 fzfid 13938 . . . . . 6 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
7 elfznn 13514 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
87adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
9 mucl 27051 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
1110zred 12638 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
1211, 8nndivred 12240 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
137nnrpd 12993 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
14 rpdivcl 12978 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
1513, 14sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
1615relogcld 26532 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1712, 16remulcld 11204 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
1817recnd 11202 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
196, 18fsumcl 15699 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
2019adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
21 mulogsumlem 27442 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
22 sumex 15654 . . . . . . . 8 Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ V
2322a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ V)
2421a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
2523, 24o1mptrcl 15589 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
265, 20subcld 11533 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
27 1red 11175 . . . . . 6 (⊤ → 1 ∈ ℝ)
28 fz1ssnn 13516 . . . . . . . . . . . . . . . 16 (1...(⌊‘𝑥)) ⊆ ℕ
2928a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ⊆ ℕ)
3029sselda 3946 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
3130, 9syl 17 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
3231zred 12638 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
3332, 30nndivred 12240 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
3433recnd 11202 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
35 fzfid 13938 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
36 elfznn 13514 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
3736adantl 481 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
3837nnrpd 12993 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
3938rpcnne0d 13004 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
40 reccl 11844 . . . . . . . . . . . 12 ((𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) → (1 / 𝑚) ∈ ℂ)
4139, 40syl 17 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ)
4235, 41fsumcl 15699 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℂ)
43 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ+)
4443, 13, 14syl2an 596 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
4544relogcld 26532 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
4645recnd 11202 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
4734, 42, 46subdid 11634 . . . . . . . . 9 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = ((((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
4847sumeq2dv 15668 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
49 fzfid 13938 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ∈ Fin)
5034, 42mulcld 11194 . . . . . . . . 9 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) ∈ ℂ)
5118adantlr 715 . . . . . . . . 9 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
5249, 50, 51fsumsub 15754 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
53 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = (𝑛 · 𝑚) → (1 / 𝑘) = (1 / (𝑛 · 𝑚)))
5453oveq2d 7403 . . . . . . . . . . 11 (𝑘 = (𝑛 · 𝑚) → ((μ‘𝑛) · (1 / 𝑘)) = ((μ‘𝑛) · (1 / (𝑛 · 𝑚))))
55 rpre 12960 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5655adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ)
57 ssrab2 4043 . . . . . . . . . . . . . . 15 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
58 simprr 772 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
5957, 58sselid 3944 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
6059, 9syl 17 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
6160zcnd 12639 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℂ)
62 elfznn 13514 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
6362adantl 481 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
6463nnrecred 12237 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1 / 𝑘) ∈ ℝ)
6564recnd 11202 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1 / 𝑘) ∈ ℂ)
6665adantrr 717 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (1 / 𝑘) ∈ ℂ)
6761, 66mulcld 11194 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((μ‘𝑛) · (1 / 𝑘)) ∈ ℂ)
6854, 56, 67dvdsflsumcom 27098 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · (1 / 𝑘)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · (1 / (𝑛 · 𝑚))))
69 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 1 → (1 / 𝑘) = (1 / 1))
70 1div1e1 11873 . . . . . . . . . . . 12 (1 / 1) = 1
7169, 70eqtrdi 2780 . . . . . . . . . . 11 (𝑘 = 1 → (1 / 𝑘) = 1)
72 flge1nn 13783 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
7355, 72sylan 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
74 nnuz 12836 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
7573, 74eleqtrdi 2838 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘1))
76 eluzfz1 13492 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
7775, 76syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ (1...(⌊‘𝑥)))
7871, 49, 29, 77, 65musumsum 27102 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · (1 / 𝑘)) = 1)
7931zcnd 12639 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
8079adantr 480 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (μ‘𝑛) ∈ ℂ)
8130adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℕ)
8281nnrpd 12993 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℝ+)
8382rpcnne0d 13004 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
84 divdiv1 11893 . . . . . . . . . . . . . . 15 (((μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((μ‘𝑛) / 𝑛) / 𝑚) = ((μ‘𝑛) / (𝑛 · 𝑚)))
8580, 83, 39, 84syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((μ‘𝑛) / 𝑛) / 𝑚) = ((μ‘𝑛) / (𝑛 · 𝑚)))
8634adantr 480 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
8737nncnd 12202 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ)
8837nnne0d 12236 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≠ 0)
8986, 87, 88divrecd 11961 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((μ‘𝑛) / 𝑛) / 𝑚) = (((μ‘𝑛) / 𝑛) · (1 / 𝑚)))
90 nnmulcl 12210 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑛 · 𝑚) ∈ ℕ)
9130, 36, 90syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ∈ ℕ)
9291nncnd 12202 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ∈ ℂ)
9391nnne0d 12236 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ≠ 0)
9480, 92, 93divrecd 11961 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) / (𝑛 · 𝑚)) = ((μ‘𝑛) · (1 / (𝑛 · 𝑚))))
9585, 89, 943eqtr3rd 2773 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) · (1 / (𝑛 · 𝑚))) = (((μ‘𝑛) / 𝑛) · (1 / 𝑚)))
9695sumeq2dv 15668 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · (1 / (𝑛 · 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · (1 / 𝑚)))
9735, 34, 41fsummulc2 15750 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · (1 / 𝑚)))
9896, 97eqtr4d 2767 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · (1 / (𝑛 · 𝑚))) = (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
9998sumeq2dv 15668 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · (1 / (𝑛 · 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
10068, 78, 993eqtr3rd 2773 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) = 1)
101100oveq1d 7402 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
10248, 52, 1013eqtrd 2768 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
103102adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
10425, 26, 27, 103o1eq 15536 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)))
10521, 104mpbii 233 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
1065, 20, 105o1dif 15596 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)))
1074, 106mpbii 233 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1))
108107mptru 1547 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cfl 13752  𝑂(1)co1 15452  Σcsu 15652  cdvds 16222  logclog 26463  μcmu 27005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-atan 26777  df-em 26903  df-mu 27011
This theorem is referenced by:  mulog2sumlem3  27447  selberglem1  27456
  Copyright terms: Public domain W3C validator