Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliplem | Structured version Visualization version GIF version |
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliplem | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . 2 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
2 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
3 | simpr 484 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇}) | |
4 | fvres 6775 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) |
6 | prfi 9019 | . . . . . . . 8 ⊢ {𝐻, 𝑇} ∈ Fin | |
7 | 3 | elpwid 4541 | . . . . . . . 8 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇}) |
8 | ssfi 8918 | . . . . . . . 8 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
9 | 6, 7, 8 | sylancr 586 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
10 | hashcl 13999 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
12 | 11 | nn0red 12224 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ) |
13 | 5, 12 | eqeltrd 2839 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ) |
14 | simpr 484 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
15 | 2re 11977 | . . . . . 6 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ) |
17 | 2ne0 12007 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0) |
19 | rexdiv 31102 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2)) | |
20 | 14, 16, 18, 19 | syl3anc 1369 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2)) |
21 | hashresfn 13982 | . . . . 5 ⊢ (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
23 | pwfi 8923 | . . . . . 6 ⊢ ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin) | |
24 | 6, 23 | mpbi 229 | . . . . 5 ⊢ 𝒫 {𝐻, 𝑇} ∈ Fin |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin) |
26 | 15 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
27 | 13, 20, 22, 25, 26 | ofcfeqd2 31969 | . . 3 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)) |
28 | 2, 27 | ax-mp 5 | . 2 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
29 | 1, 28 | eqtr4i 2769 | 1 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 {cpr 4560 〈cop 4564 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℝcr 10801 0cc0 10802 1c1 10803 / cdiv 11562 2c2 11958 ℕ0cn0 12163 ♯chash 13972 /𝑒 cxdiv 31093 ∘f/c cofc 31963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xneg 12777 df-xmul 12779 df-hash 13973 df-xdiv 31094 df-ofc 31964 |
This theorem is referenced by: coinflipprob 32346 |
Copyright terms: Public domain | W3C validator |