| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliplem | Structured version Visualization version GIF version | ||
| Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| coinflip.h | ⊢ 𝐻 ∈ V |
| coinflip.t | ⊢ 𝑇 ∈ V |
| coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
| coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
| Ref | Expression |
|---|---|
| coinfliplem | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coinflip.2 | . 2 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
| 2 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇}) | |
| 4 | fvres 6859 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) |
| 6 | prfi 9250 | . . . . . . . 8 ⊢ {𝐻, 𝑇} ∈ Fin | |
| 7 | 3 | elpwid 4568 | . . . . . . . 8 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇}) |
| 8 | ssfi 9114 | . . . . . . . 8 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
| 10 | hashcl 14297 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
| 12 | 11 | nn0red 12480 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ) |
| 13 | 5, 12 | eqeltrd 2828 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 15 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ) |
| 17 | 2ne0 12266 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0) |
| 19 | rexdiv 32896 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2)) | |
| 20 | 14, 16, 18, 19 | syl3anc 1373 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2)) |
| 21 | hashresfn 14281 | . . . . 5 ⊢ (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
| 23 | pwfi 9244 | . . . . . 6 ⊢ ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin) | |
| 24 | 6, 23 | mpbi 230 | . . . . 5 ⊢ 𝒫 {𝐻, 𝑇} ∈ Fin |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin) |
| 26 | 15 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
| 27 | 13, 20, 22, 25, 26 | ofcfeqd2 34084 | . . 3 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)) |
| 28 | 2, 27 | ax-mp 5 | . 2 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| 29 | 1, 28 | eqtr4i 2755 | 1 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 {cpr 4587 〈cop 4591 ↾ cres 5633 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℝcr 11043 0cc0 11044 1c1 11045 / cdiv 11811 2c2 12217 ℕ0cn0 12418 ♯chash 14271 /𝑒 cxdiv 32887 ∘f/c cofc 34078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xneg 13048 df-xmul 13050 df-hash 14272 df-xdiv 32888 df-ofc 34079 |
| This theorem is referenced by: coinflipprob 34464 |
| Copyright terms: Public domain | W3C validator |