Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinfliplem Structured version   Visualization version   GIF version

Theorem coinfliplem 34463
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinfliplem 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2)

Proof of Theorem coinfliplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . 2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
2 coinflip.h . . 3 𝐻 ∈ V
3 simpr 484 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇})
4 fvres 6859 . . . . . 6 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥))
53, 4syl 17 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥))
6 prfi 9250 . . . . . . . 8 {𝐻, 𝑇} ∈ Fin
73elpwid 4568 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇})
8 ssfi 9114 . . . . . . . 8 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
96, 7, 8sylancr 587 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
10 hashcl 14297 . . . . . . 7 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
119, 10syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0)
1211nn0red 12480 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ)
135, 12eqeltrd 2828 . . . 4 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ)
14 simpr 484 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
15 2re 12236 . . . . . 6 2 ∈ ℝ
1615a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ)
17 2ne0 12266 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0)
19 rexdiv 32896 . . . . 5 ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2))
2014, 16, 18, 19syl3anc 1373 . . . 4 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2))
21 hashresfn 14281 . . . . 5 (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}
2221a1i 11 . . . 4 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇})
23 pwfi 9244 . . . . . 6 ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin)
246, 23mpbi 230 . . . . 5 𝒫 {𝐻, 𝑇} ∈ Fin
2524a1i 11 . . . 4 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin)
2615a1i 11 . . . 4 (𝐻 ∈ V → 2 ∈ ℝ)
2713, 20, 22, 25, 26ofcfeqd2 34084 . . 3 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2))
282, 27ax-mp 5 . 2 ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
291, 28eqtr4i 2755 1 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  wss 3911  𝒫 cpw 4559  {cpr 4587  cop 4591  cres 5633   Fn wfn 6494  cfv 6499  (class class class)co 7369  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   / cdiv 11811  2c2 12217  0cn0 12418  chash 14271   /𝑒 cxdiv 32887  f/c cofc 34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xneg 13048  df-xmul 13050  df-hash 14272  df-xdiv 32888  df-ofc 34079
This theorem is referenced by:  coinflipprob  34464
  Copyright terms: Public domain W3C validator