Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinfliplem Structured version   Visualization version   GIF version

Theorem coinfliplem 34482
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinfliplem 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2)

Proof of Theorem coinfliplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . 2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
2 coinflip.h . . 3 𝐻 ∈ V
3 simpr 484 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇})
4 fvres 6836 . . . . . 6 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥))
53, 4syl 17 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥))
6 prfi 9203 . . . . . . . 8 {𝐻, 𝑇} ∈ Fin
73elpwid 4557 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇})
8 ssfi 9077 . . . . . . . 8 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
96, 7, 8sylancr 587 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
10 hashcl 14255 . . . . . . 7 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
119, 10syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0)
1211nn0red 12435 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ)
135, 12eqeltrd 2829 . . . 4 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ)
14 simpr 484 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
15 2re 12191 . . . . . 6 2 ∈ ℝ
1615a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ)
17 2ne0 12221 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0)
19 rexdiv 32896 . . . . 5 ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2))
2014, 16, 18, 19syl3anc 1373 . . . 4 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2))
21 hashresfn 14239 . . . . 5 (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}
2221a1i 11 . . . 4 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇})
23 pwfi 9198 . . . . . 6 ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin)
246, 23mpbi 230 . . . . 5 𝒫 {𝐻, 𝑇} ∈ Fin
2524a1i 11 . . . 4 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin)
2615a1i 11 . . . 4 (𝐻 ∈ V → 2 ∈ ℝ)
2713, 20, 22, 25, 26ofcfeqd2 34104 . . 3 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2))
282, 27ax-mp 5 . 2 ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
291, 28eqtr4i 2756 1 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  wss 3900  𝒫 cpw 4548  {cpr 4576  cop 4580  cres 5616   Fn wfn 6472  cfv 6477  (class class class)co 7341  Fincfn 8864  cr 10997  0cc0 10998  1c1 10999   / cdiv 11766  2c2 12172  0cn0 12373  chash 14229   /𝑒 cxdiv 32887  f/c cofc 34098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-xneg 13003  df-xmul 13005  df-hash 14230  df-xdiv 32888  df-ofc 34099
This theorem is referenced by:  coinflipprob  34483
  Copyright terms: Public domain W3C validator