![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliplem | Structured version Visualization version GIF version |
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
coinflip.3 | ⊢ 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩} |
Ref | Expression |
---|---|
coinfliplem | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . 2 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
2 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
3 | simpr 484 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇}) | |
4 | fvres 6910 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) |
6 | prfi 9326 | . . . . . . . 8 ⊢ {𝐻, 𝑇} ∈ Fin | |
7 | 3 | elpwid 4611 | . . . . . . . 8 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇}) |
8 | ssfi 9177 | . . . . . . . 8 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
9 | 6, 7, 8 | sylancr 586 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
10 | hashcl 14321 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
12 | 11 | nn0red 12538 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ) |
13 | 5, 12 | eqeltrd 2832 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ) |
14 | simpr 484 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
15 | 2re 12291 | . . . . . 6 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ) |
17 | 2ne0 12321 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0) |
19 | rexdiv 32360 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2)) | |
20 | 14, 16, 18, 19 | syl3anc 1370 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2)) |
21 | hashresfn 14305 | . . . . 5 ⊢ (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
23 | pwfi 9182 | . . . . . 6 ⊢ ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin) | |
24 | 6, 23 | mpbi 229 | . . . . 5 ⊢ 𝒫 {𝐻, 𝑇} ∈ Fin |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin) |
26 | 15 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
27 | 13, 20, 22, 25, 26 | ofcfeqd2 33398 | . . 3 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)) |
28 | 2, 27 | ax-mp 5 | . 2 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
29 | 1, 28 | eqtr4i 2762 | 1 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 {cpr 4630 ⟨cop 4634 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 Fincfn 8943 ℝcr 11113 0cc0 11114 1c1 11115 / cdiv 11876 2c2 12272 ℕ0cn0 12477 ♯chash 14295 /𝑒 cxdiv 32351 ∘f/c cofc 33392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xneg 13097 df-xmul 13099 df-hash 14296 df-xdiv 32352 df-ofc 33393 |
This theorem is referenced by: coinflipprob 33777 |
Copyright terms: Public domain | W3C validator |