Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcccat Structured version   Visualization version   GIF version

Theorem ofcccat 32628
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ofcccat.1 (𝜑𝐹 ∈ Word 𝑆)
ofcccat.2 (𝜑𝐺 ∈ Word 𝑆)
ofcccat.3 (𝜑𝐾𝑇)
Assertion
Ref Expression
ofcccat (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))

Proof of Theorem ofcccat
StepHypRef Expression
1 ofcccat.1 . . 3 (𝜑𝐹 ∈ Word 𝑆)
2 ofcccat.2 . . 3 (𝜑𝐺 ∈ Word 𝑆)
3 ofcccat.3 . . . 4 (𝜑𝐾𝑇)
4 fconst6g 6698 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇)
5 iswrdi 14290 . . . 4 (((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
63, 4, 53syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
7 fconst6g 6698 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇)
8 iswrdi 14290 . . . 4 (((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
93, 7, 83syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
10 fzofi 13764 . . . . 5 (0..^(♯‘𝐹)) ∈ Fin
11 snfi 8884 . . . . 5 {𝐾} ∈ Fin
12 hashxp 14218 . . . . 5 (((0..^(♯‘𝐹)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})))
1310, 11, 12mp2an 689 . . . 4 (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾}))
14 lencl 14305 . . . . . . 7 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
15 hashfzo0 14214 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
161, 14, 153syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
17 hashsng 14153 . . . . . . 7 (𝐾𝑇 → (♯‘{𝐾}) = 1)
183, 17syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
1916, 18oveq12d 7331 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = ((♯‘𝐹) · 1))
201, 14syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2120nn0cnd 12365 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℂ)
2221mulid1d 11062 . . . . 5 (𝜑 → ((♯‘𝐹) · 1) = (♯‘𝐹))
2319, 22eqtrd 2777 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = (♯‘𝐹))
2413, 23eqtr2id 2790 . . 3 (𝜑 → (♯‘𝐹) = (♯‘((0..^(♯‘𝐹)) × {𝐾})))
25 fzofi 13764 . . . . 5 (0..^(♯‘𝐺)) ∈ Fin
26 hashxp 14218 . . . . 5 (((0..^(♯‘𝐺)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})))
2725, 11, 26mp2an 689 . . . 4 (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾}))
28 lencl 14305 . . . . . . 7 (𝐺 ∈ Word 𝑆 → (♯‘𝐺) ∈ ℕ0)
29 hashfzo0 14214 . . . . . . 7 ((♯‘𝐺) ∈ ℕ0 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
302, 28, 293syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
3130, 18oveq12d 7331 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = ((♯‘𝐺) · 1))
322, 28syl 17 . . . . . . 7 (𝜑 → (♯‘𝐺) ∈ ℕ0)
3332nn0cnd 12365 . . . . . 6 (𝜑 → (♯‘𝐺) ∈ ℂ)
3433mulid1d 11062 . . . . 5 (𝜑 → ((♯‘𝐺) · 1) = (♯‘𝐺))
3531, 34eqtrd 2777 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = (♯‘𝐺))
3627, 35eqtr2id 2790 . . 3 (𝜑 → (♯‘𝐺) = (♯‘((0..^(♯‘𝐺)) × {𝐾})))
371, 2, 6, 9, 24, 36ofccat 14749 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
38 ccatcl 14346 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (𝐹 ++ 𝐺) ∈ Word 𝑆)
391, 2, 38syl2anc 584 . . . . 5 (𝜑 → (𝐹 ++ 𝐺) ∈ Word 𝑆)
40 wrdf 14291 . . . . 5 ((𝐹 ++ 𝐺) ∈ Word 𝑆 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
4139, 40syl 17 . . . 4 (𝜑 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
42 ovexd 7348 . . . 4 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) ∈ V)
4341, 42, 3ofcof 32181 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})))
44 eqid 2737 . . . . 5 ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾})
45 ccatlen 14347 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
461, 2, 45syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
4746oveq2d 7329 . . . . . 6 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) = (0..^((♯‘𝐹) + (♯‘𝐺))))
4847xpeq1d 5634 . . . . 5 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
49 eqid 2737 . . . . . 6 ((0..^(♯‘𝐹)) × {𝐾}) = ((0..^(♯‘𝐹)) × {𝐾})
50 eqid 2737 . . . . . 6 ((0..^(♯‘𝐺)) × {𝐾}) = ((0..^(♯‘𝐺)) × {𝐾})
5149, 50, 44, 3, 20, 32ccatmulgnn0dir 32627 . . . . 5 (𝜑 → (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
5244, 48, 513eqtr4a 2803 . . . 4 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})))
5352oveq2d 7329 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
5443, 53eqtrd 2777 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
55 wrdf 14291 . . . . 5 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
561, 55syl 17 . . . 4 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑆)
57 ovexd 7348 . . . 4 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
5856, 57, 3ofcof 32181 . . 3 (𝜑 → (𝐹f/c 𝑅𝐾) = (𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})))
59 wrdf 14291 . . . . 5 (𝐺 ∈ Word 𝑆𝐺:(0..^(♯‘𝐺))⟶𝑆)
602, 59syl 17 . . . 4 (𝜑𝐺:(0..^(♯‘𝐺))⟶𝑆)
61 ovexd 7348 . . . 4 (𝜑 → (0..^(♯‘𝐺)) ∈ V)
6260, 61, 3ofcof 32181 . . 3 (𝜑 → (𝐺f/c 𝑅𝐾) = (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾})))
6358, 62oveq12d 7331 . 2 (𝜑 → ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
6437, 54, 633eqtr4d 2787 1 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4569   × cxp 5603  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569  Fincfn 8779  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946  0cn0 12303  ..^cfzo 13452  chash 14114  Word cword 14286   ++ cconcat 14342  f/c cofc 32169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-oadd 8346  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-dju 9727  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-fzo 13453  df-hash 14115  df-word 14287  df-concat 14343  df-ofc 32170
This theorem is referenced by:  ofcs2  32630
  Copyright terms: Public domain W3C validator