Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcccat Structured version   Visualization version   GIF version

Theorem ofcccat 34541
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ofcccat.1 (𝜑𝐹 ∈ Word 𝑆)
ofcccat.2 (𝜑𝐺 ∈ Word 𝑆)
ofcccat.3 (𝜑𝐾𝑇)
Assertion
Ref Expression
ofcccat (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))

Proof of Theorem ofcccat
StepHypRef Expression
1 ofcccat.1 . . 3 (𝜑𝐹 ∈ Word 𝑆)
2 ofcccat.2 . . 3 (𝜑𝐺 ∈ Word 𝑆)
3 ofcccat.3 . . . 4 (𝜑𝐾𝑇)
4 fconst6g 6752 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇)
5 iswrdi 14489 . . . 4 (((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
63, 4, 53syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
7 fconst6g 6752 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇)
8 iswrdi 14489 . . . 4 (((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
93, 7, 83syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
10 fzofi 13946 . . . . 5 (0..^(♯‘𝐹)) ∈ Fin
11 snfi 9017 . . . . 5 {𝐾} ∈ Fin
12 hashxp 14406 . . . . 5 (((0..^(♯‘𝐹)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})))
1310, 11, 12mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾}))
14 lencl 14505 . . . . . . 7 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
15 hashfzo0 14402 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
161, 14, 153syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
17 hashsng 14341 . . . . . . 7 (𝐾𝑇 → (♯‘{𝐾}) = 1)
183, 17syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
1916, 18oveq12d 7408 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = ((♯‘𝐹) · 1))
201, 14syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2120nn0cnd 12512 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℂ)
2221mulridd 11198 . . . . 5 (𝜑 → ((♯‘𝐹) · 1) = (♯‘𝐹))
2319, 22eqtrd 2765 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = (♯‘𝐹))
2413, 23eqtr2id 2778 . . 3 (𝜑 → (♯‘𝐹) = (♯‘((0..^(♯‘𝐹)) × {𝐾})))
25 fzofi 13946 . . . . 5 (0..^(♯‘𝐺)) ∈ Fin
26 hashxp 14406 . . . . 5 (((0..^(♯‘𝐺)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})))
2725, 11, 26mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾}))
28 lencl 14505 . . . . . . 7 (𝐺 ∈ Word 𝑆 → (♯‘𝐺) ∈ ℕ0)
29 hashfzo0 14402 . . . . . . 7 ((♯‘𝐺) ∈ ℕ0 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
302, 28, 293syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
3130, 18oveq12d 7408 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = ((♯‘𝐺) · 1))
322, 28syl 17 . . . . . . 7 (𝜑 → (♯‘𝐺) ∈ ℕ0)
3332nn0cnd 12512 . . . . . 6 (𝜑 → (♯‘𝐺) ∈ ℂ)
3433mulridd 11198 . . . . 5 (𝜑 → ((♯‘𝐺) · 1) = (♯‘𝐺))
3531, 34eqtrd 2765 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = (♯‘𝐺))
3627, 35eqtr2id 2778 . . 3 (𝜑 → (♯‘𝐺) = (♯‘((0..^(♯‘𝐺)) × {𝐾})))
371, 2, 6, 9, 24, 36ofccat 14942 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
38 ccatcl 14546 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (𝐹 ++ 𝐺) ∈ Word 𝑆)
391, 2, 38syl2anc 584 . . . . 5 (𝜑 → (𝐹 ++ 𝐺) ∈ Word 𝑆)
40 wrdf 14490 . . . . 5 ((𝐹 ++ 𝐺) ∈ Word 𝑆 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
4139, 40syl 17 . . . 4 (𝜑 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
42 ovexd 7425 . . . 4 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) ∈ V)
4341, 42, 3ofcof 34104 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})))
44 eqid 2730 . . . . 5 ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾})
45 ccatlen 14547 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
461, 2, 45syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
4746oveq2d 7406 . . . . . 6 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) = (0..^((♯‘𝐹) + (♯‘𝐺))))
4847xpeq1d 5670 . . . . 5 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
49 eqid 2730 . . . . . 6 ((0..^(♯‘𝐹)) × {𝐾}) = ((0..^(♯‘𝐹)) × {𝐾})
50 eqid 2730 . . . . . 6 ((0..^(♯‘𝐺)) × {𝐾}) = ((0..^(♯‘𝐺)) × {𝐾})
5149, 50, 44, 3, 20, 32ccatmulgnn0dir 34540 . . . . 5 (𝜑 → (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
5244, 48, 513eqtr4a 2791 . . . 4 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})))
5352oveq2d 7406 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
5443, 53eqtrd 2765 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
55 wrdf 14490 . . . . 5 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
561, 55syl 17 . . . 4 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑆)
57 ovexd 7425 . . . 4 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
5856, 57, 3ofcof 34104 . . 3 (𝜑 → (𝐹f/c 𝑅𝐾) = (𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})))
59 wrdf 14490 . . . . 5 (𝐺 ∈ Word 𝑆𝐺:(0..^(♯‘𝐺))⟶𝑆)
602, 59syl 17 . . . 4 (𝜑𝐺:(0..^(♯‘𝐺))⟶𝑆)
61 ovexd 7425 . . . 4 (𝜑 → (0..^(♯‘𝐺)) ∈ V)
6260, 61, 3ofcof 34104 . . 3 (𝜑 → (𝐺f/c 𝑅𝐾) = (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾})))
6358, 62oveq12d 7408 . 2 (𝜑 → ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
6437, 54, 633eqtr4d 2775 1 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Fincfn 8921  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  f/c cofc 34092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-ofc 34093
This theorem is referenced by:  ofcs2  34543
  Copyright terms: Public domain W3C validator