Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcccat Structured version   Visualization version   GIF version

Theorem ofcccat 34534
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ofcccat.1 (𝜑𝐹 ∈ Word 𝑆)
ofcccat.2 (𝜑𝐺 ∈ Word 𝑆)
ofcccat.3 (𝜑𝐾𝑇)
Assertion
Ref Expression
ofcccat (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))

Proof of Theorem ofcccat
StepHypRef Expression
1 ofcccat.1 . . 3 (𝜑𝐹 ∈ Word 𝑆)
2 ofcccat.2 . . 3 (𝜑𝐺 ∈ Word 𝑆)
3 ofcccat.3 . . . 4 (𝜑𝐾𝑇)
4 fconst6g 6749 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇)
5 iswrdi 14482 . . . 4 (((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
63, 4, 53syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
7 fconst6g 6749 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇)
8 iswrdi 14482 . . . 4 (((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
93, 7, 83syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
10 fzofi 13939 . . . . 5 (0..^(♯‘𝐹)) ∈ Fin
11 snfi 9014 . . . . 5 {𝐾} ∈ Fin
12 hashxp 14399 . . . . 5 (((0..^(♯‘𝐹)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})))
1310, 11, 12mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾}))
14 lencl 14498 . . . . . . 7 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
15 hashfzo0 14395 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
161, 14, 153syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
17 hashsng 14334 . . . . . . 7 (𝐾𝑇 → (♯‘{𝐾}) = 1)
183, 17syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
1916, 18oveq12d 7405 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = ((♯‘𝐹) · 1))
201, 14syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2120nn0cnd 12505 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℂ)
2221mulridd 11191 . . . . 5 (𝜑 → ((♯‘𝐹) · 1) = (♯‘𝐹))
2319, 22eqtrd 2764 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = (♯‘𝐹))
2413, 23eqtr2id 2777 . . 3 (𝜑 → (♯‘𝐹) = (♯‘((0..^(♯‘𝐹)) × {𝐾})))
25 fzofi 13939 . . . . 5 (0..^(♯‘𝐺)) ∈ Fin
26 hashxp 14399 . . . . 5 (((0..^(♯‘𝐺)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})))
2725, 11, 26mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾}))
28 lencl 14498 . . . . . . 7 (𝐺 ∈ Word 𝑆 → (♯‘𝐺) ∈ ℕ0)
29 hashfzo0 14395 . . . . . . 7 ((♯‘𝐺) ∈ ℕ0 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
302, 28, 293syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
3130, 18oveq12d 7405 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = ((♯‘𝐺) · 1))
322, 28syl 17 . . . . . . 7 (𝜑 → (♯‘𝐺) ∈ ℕ0)
3332nn0cnd 12505 . . . . . 6 (𝜑 → (♯‘𝐺) ∈ ℂ)
3433mulridd 11191 . . . . 5 (𝜑 → ((♯‘𝐺) · 1) = (♯‘𝐺))
3531, 34eqtrd 2764 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = (♯‘𝐺))
3627, 35eqtr2id 2777 . . 3 (𝜑 → (♯‘𝐺) = (♯‘((0..^(♯‘𝐺)) × {𝐾})))
371, 2, 6, 9, 24, 36ofccat 14935 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
38 ccatcl 14539 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (𝐹 ++ 𝐺) ∈ Word 𝑆)
391, 2, 38syl2anc 584 . . . . 5 (𝜑 → (𝐹 ++ 𝐺) ∈ Word 𝑆)
40 wrdf 14483 . . . . 5 ((𝐹 ++ 𝐺) ∈ Word 𝑆 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
4139, 40syl 17 . . . 4 (𝜑 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
42 ovexd 7422 . . . 4 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) ∈ V)
4341, 42, 3ofcof 34097 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})))
44 eqid 2729 . . . . 5 ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾})
45 ccatlen 14540 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
461, 2, 45syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
4746oveq2d 7403 . . . . . 6 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) = (0..^((♯‘𝐹) + (♯‘𝐺))))
4847xpeq1d 5667 . . . . 5 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
49 eqid 2729 . . . . . 6 ((0..^(♯‘𝐹)) × {𝐾}) = ((0..^(♯‘𝐹)) × {𝐾})
50 eqid 2729 . . . . . 6 ((0..^(♯‘𝐺)) × {𝐾}) = ((0..^(♯‘𝐺)) × {𝐾})
5149, 50, 44, 3, 20, 32ccatmulgnn0dir 34533 . . . . 5 (𝜑 → (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
5244, 48, 513eqtr4a 2790 . . . 4 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})))
5352oveq2d 7403 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
5443, 53eqtrd 2764 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
55 wrdf 14483 . . . . 5 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
561, 55syl 17 . . . 4 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑆)
57 ovexd 7422 . . . 4 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
5856, 57, 3ofcof 34097 . . 3 (𝜑 → (𝐹f/c 𝑅𝐾) = (𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})))
59 wrdf 14483 . . . . 5 (𝐺 ∈ Word 𝑆𝐺:(0..^(♯‘𝐺))⟶𝑆)
602, 59syl 17 . . . 4 (𝜑𝐺:(0..^(♯‘𝐺))⟶𝑆)
61 ovexd 7422 . . . 4 (𝜑 → (0..^(♯‘𝐺)) ∈ V)
6260, 61, 3ofcof 34097 . . 3 (𝜑 → (𝐺f/c 𝑅𝐾) = (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾})))
6358, 62oveq12d 7405 . 2 (𝜑 → ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
6437, 54, 633eqtr4d 2774 1 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  0cn0 12442  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  f/c cofc 34085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-ofc 34086
This theorem is referenced by:  ofcs2  34536
  Copyright terms: Public domain W3C validator