Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcccat Structured version   Visualization version   GIF version

Theorem ofcccat 34389
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ofcccat.1 (𝜑𝐹 ∈ Word 𝑆)
ofcccat.2 (𝜑𝐺 ∈ Word 𝑆)
ofcccat.3 (𝜑𝐾𝑇)
Assertion
Ref Expression
ofcccat (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))

Proof of Theorem ofcccat
StepHypRef Expression
1 ofcccat.1 . . 3 (𝜑𝐹 ∈ Word 𝑆)
2 ofcccat.2 . . 3 (𝜑𝐺 ∈ Word 𝑆)
3 ofcccat.3 . . . 4 (𝜑𝐾𝑇)
4 fconst6g 6791 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇)
5 iswrdi 14526 . . . 4 (((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
63, 4, 53syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
7 fconst6g 6791 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇)
8 iswrdi 14526 . . . 4 (((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
93, 7, 83syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
10 fzofi 13994 . . . . 5 (0..^(♯‘𝐹)) ∈ Fin
11 snfi 9081 . . . . 5 {𝐾} ∈ Fin
12 hashxp 14451 . . . . 5 (((0..^(♯‘𝐹)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})))
1310, 11, 12mp2an 690 . . . 4 (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾}))
14 lencl 14541 . . . . . . 7 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
15 hashfzo0 14447 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
161, 14, 153syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
17 hashsng 14386 . . . . . . 7 (𝐾𝑇 → (♯‘{𝐾}) = 1)
183, 17syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
1916, 18oveq12d 7442 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = ((♯‘𝐹) · 1))
201, 14syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2120nn0cnd 12586 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℂ)
2221mulridd 11281 . . . . 5 (𝜑 → ((♯‘𝐹) · 1) = (♯‘𝐹))
2319, 22eqtrd 2766 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = (♯‘𝐹))
2413, 23eqtr2id 2779 . . 3 (𝜑 → (♯‘𝐹) = (♯‘((0..^(♯‘𝐹)) × {𝐾})))
25 fzofi 13994 . . . . 5 (0..^(♯‘𝐺)) ∈ Fin
26 hashxp 14451 . . . . 5 (((0..^(♯‘𝐺)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})))
2725, 11, 26mp2an 690 . . . 4 (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾}))
28 lencl 14541 . . . . . . 7 (𝐺 ∈ Word 𝑆 → (♯‘𝐺) ∈ ℕ0)
29 hashfzo0 14447 . . . . . . 7 ((♯‘𝐺) ∈ ℕ0 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
302, 28, 293syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
3130, 18oveq12d 7442 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = ((♯‘𝐺) · 1))
322, 28syl 17 . . . . . . 7 (𝜑 → (♯‘𝐺) ∈ ℕ0)
3332nn0cnd 12586 . . . . . 6 (𝜑 → (♯‘𝐺) ∈ ℂ)
3433mulridd 11281 . . . . 5 (𝜑 → ((♯‘𝐺) · 1) = (♯‘𝐺))
3531, 34eqtrd 2766 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = (♯‘𝐺))
3627, 35eqtr2id 2779 . . 3 (𝜑 → (♯‘𝐺) = (♯‘((0..^(♯‘𝐺)) × {𝐾})))
371, 2, 6, 9, 24, 36ofccat 14974 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
38 ccatcl 14582 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (𝐹 ++ 𝐺) ∈ Word 𝑆)
391, 2, 38syl2anc 582 . . . . 5 (𝜑 → (𝐹 ++ 𝐺) ∈ Word 𝑆)
40 wrdf 14527 . . . . 5 ((𝐹 ++ 𝐺) ∈ Word 𝑆 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
4139, 40syl 17 . . . 4 (𝜑 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
42 ovexd 7459 . . . 4 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) ∈ V)
4341, 42, 3ofcof 33940 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})))
44 eqid 2726 . . . . 5 ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾})
45 ccatlen 14583 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
461, 2, 45syl2anc 582 . . . . . . 7 (𝜑 → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
4746oveq2d 7440 . . . . . 6 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) = (0..^((♯‘𝐹) + (♯‘𝐺))))
4847xpeq1d 5711 . . . . 5 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
49 eqid 2726 . . . . . 6 ((0..^(♯‘𝐹)) × {𝐾}) = ((0..^(♯‘𝐹)) × {𝐾})
50 eqid 2726 . . . . . 6 ((0..^(♯‘𝐺)) × {𝐾}) = ((0..^(♯‘𝐺)) × {𝐾})
5149, 50, 44, 3, 20, 32ccatmulgnn0dir 34388 . . . . 5 (𝜑 → (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
5244, 48, 513eqtr4a 2792 . . . 4 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})))
5352oveq2d 7440 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
5443, 53eqtrd 2766 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
55 wrdf 14527 . . . . 5 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
561, 55syl 17 . . . 4 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑆)
57 ovexd 7459 . . . 4 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
5856, 57, 3ofcof 33940 . . 3 (𝜑 → (𝐹f/c 𝑅𝐾) = (𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})))
59 wrdf 14527 . . . . 5 (𝐺 ∈ Word 𝑆𝐺:(0..^(♯‘𝐺))⟶𝑆)
602, 59syl 17 . . . 4 (𝜑𝐺:(0..^(♯‘𝐺))⟶𝑆)
61 ovexd 7459 . . . 4 (𝜑 → (0..^(♯‘𝐺)) ∈ V)
6260, 61, 3ofcof 33940 . . 3 (𝜑 → (𝐺f/c 𝑅𝐾) = (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾})))
6358, 62oveq12d 7442 . 2 (𝜑 → ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
6437, 54, 633eqtr4d 2776 1 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  {csn 4633   × cxp 5680  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  Fincfn 8974  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163  0cn0 12524  ..^cfzo 13681  chash 14347  Word cword 14522   ++ cconcat 14578  f/c cofc 33928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-ofc 33929
This theorem is referenced by:  ofcs2  34391
  Copyright terms: Public domain W3C validator