Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcccat Structured version   Visualization version   GIF version

Theorem ofcccat 34558
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ofcccat.1 (𝜑𝐹 ∈ Word 𝑆)
ofcccat.2 (𝜑𝐺 ∈ Word 𝑆)
ofcccat.3 (𝜑𝐾𝑇)
Assertion
Ref Expression
ofcccat (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))

Proof of Theorem ofcccat
StepHypRef Expression
1 ofcccat.1 . . 3 (𝜑𝐹 ∈ Word 𝑆)
2 ofcccat.2 . . 3 (𝜑𝐺 ∈ Word 𝑆)
3 ofcccat.3 . . . 4 (𝜑𝐾𝑇)
4 fconst6g 6797 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇)
5 iswrdi 14556 . . . 4 (((0..^(♯‘𝐹)) × {𝐾}):(0..^(♯‘𝐹))⟶𝑇 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
63, 4, 53syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐹)) × {𝐾}) ∈ Word 𝑇)
7 fconst6g 6797 . . . 4 (𝐾𝑇 → ((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇)
8 iswrdi 14556 . . . 4 (((0..^(♯‘𝐺)) × {𝐾}):(0..^(♯‘𝐺))⟶𝑇 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
93, 7, 83syl 18 . . 3 (𝜑 → ((0..^(♯‘𝐺)) × {𝐾}) ∈ Word 𝑇)
10 fzofi 14015 . . . . 5 (0..^(♯‘𝐹)) ∈ Fin
11 snfi 9083 . . . . 5 {𝐾} ∈ Fin
12 hashxp 14473 . . . . 5 (((0..^(♯‘𝐹)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})))
1310, 11, 12mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐹)) × {𝐾})) = ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾}))
14 lencl 14571 . . . . . . 7 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
15 hashfzo0 14469 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
161, 14, 153syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
17 hashsng 14408 . . . . . . 7 (𝐾𝑇 → (♯‘{𝐾}) = 1)
183, 17syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
1916, 18oveq12d 7449 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = ((♯‘𝐹) · 1))
201, 14syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2120nn0cnd 12589 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℂ)
2221mulridd 11278 . . . . 5 (𝜑 → ((♯‘𝐹) · 1) = (♯‘𝐹))
2319, 22eqtrd 2777 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐹))) · (♯‘{𝐾})) = (♯‘𝐹))
2413, 23eqtr2id 2790 . . 3 (𝜑 → (♯‘𝐹) = (♯‘((0..^(♯‘𝐹)) × {𝐾})))
25 fzofi 14015 . . . . 5 (0..^(♯‘𝐺)) ∈ Fin
26 hashxp 14473 . . . . 5 (((0..^(♯‘𝐺)) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})))
2725, 11, 26mp2an 692 . . . 4 (♯‘((0..^(♯‘𝐺)) × {𝐾})) = ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾}))
28 lencl 14571 . . . . . . 7 (𝐺 ∈ Word 𝑆 → (♯‘𝐺) ∈ ℕ0)
29 hashfzo0 14469 . . . . . . 7 ((♯‘𝐺) ∈ ℕ0 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
302, 28, 293syl 18 . . . . . 6 (𝜑 → (♯‘(0..^(♯‘𝐺))) = (♯‘𝐺))
3130, 18oveq12d 7449 . . . . 5 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = ((♯‘𝐺) · 1))
322, 28syl 17 . . . . . . 7 (𝜑 → (♯‘𝐺) ∈ ℕ0)
3332nn0cnd 12589 . . . . . 6 (𝜑 → (♯‘𝐺) ∈ ℂ)
3433mulridd 11278 . . . . 5 (𝜑 → ((♯‘𝐺) · 1) = (♯‘𝐺))
3531, 34eqtrd 2777 . . . 4 (𝜑 → ((♯‘(0..^(♯‘𝐺))) · (♯‘{𝐾})) = (♯‘𝐺))
3627, 35eqtr2id 2790 . . 3 (𝜑 → (♯‘𝐺) = (♯‘((0..^(♯‘𝐺)) × {𝐾})))
371, 2, 6, 9, 24, 36ofccat 15008 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
38 ccatcl 14612 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (𝐹 ++ 𝐺) ∈ Word 𝑆)
391, 2, 38syl2anc 584 . . . . 5 (𝜑 → (𝐹 ++ 𝐺) ∈ Word 𝑆)
40 wrdf 14557 . . . . 5 ((𝐹 ++ 𝐺) ∈ Word 𝑆 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
4139, 40syl 17 . . . 4 (𝜑 → (𝐹 ++ 𝐺):(0..^(♯‘(𝐹 ++ 𝐺)))⟶𝑆)
42 ovexd 7466 . . . 4 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) ∈ V)
4341, 42, 3ofcof 34108 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})))
44 eqid 2737 . . . . 5 ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾})
45 ccatlen 14613 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐺 ∈ Word 𝑆) → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
461, 2, 45syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝐹 ++ 𝐺)) = ((♯‘𝐹) + (♯‘𝐺)))
4746oveq2d 7447 . . . . . 6 (𝜑 → (0..^(♯‘(𝐹 ++ 𝐺))) = (0..^((♯‘𝐹) + (♯‘𝐺))))
4847xpeq1d 5714 . . . . 5 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
49 eqid 2737 . . . . . 6 ((0..^(♯‘𝐹)) × {𝐾}) = ((0..^(♯‘𝐹)) × {𝐾})
50 eqid 2737 . . . . . 6 ((0..^(♯‘𝐺)) × {𝐾}) = ((0..^(♯‘𝐺)) × {𝐾})
5149, 50, 44, 3, 20, 32ccatmulgnn0dir 34557 . . . . 5 (𝜑 → (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})) = ((0..^((♯‘𝐹) + (♯‘𝐺))) × {𝐾}))
5244, 48, 513eqtr4a 2803 . . . 4 (𝜑 → ((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾}) = (((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾})))
5352oveq2d 7447 . . 3 (𝜑 → ((𝐹 ++ 𝐺) ∘f 𝑅((0..^(♯‘(𝐹 ++ 𝐺))) × {𝐾})) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
5443, 53eqtrd 2777 . 2 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ++ 𝐺) ∘f 𝑅(((0..^(♯‘𝐹)) × {𝐾}) ++ ((0..^(♯‘𝐺)) × {𝐾}))))
55 wrdf 14557 . . . . 5 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
561, 55syl 17 . . . 4 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑆)
57 ovexd 7466 . . . 4 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
5856, 57, 3ofcof 34108 . . 3 (𝜑 → (𝐹f/c 𝑅𝐾) = (𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})))
59 wrdf 14557 . . . . 5 (𝐺 ∈ Word 𝑆𝐺:(0..^(♯‘𝐺))⟶𝑆)
602, 59syl 17 . . . 4 (𝜑𝐺:(0..^(♯‘𝐺))⟶𝑆)
61 ovexd 7466 . . . 4 (𝜑 → (0..^(♯‘𝐺)) ∈ V)
6260, 61, 3ofcof 34108 . . 3 (𝜑 → (𝐺f/c 𝑅𝐾) = (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾})))
6358, 62oveq12d 7449 . 2 (𝜑 → ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)) = ((𝐹f 𝑅((0..^(♯‘𝐹)) × {𝐾})) ++ (𝐺f 𝑅((0..^(♯‘𝐺)) × {𝐾}))))
6437, 54, 633eqtr4d 2787 1 (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹f/c 𝑅𝐾) ++ (𝐺f/c 𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  0cn0 12526  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  f/c cofc 34096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-ofc 34097
This theorem is referenced by:  ofcs2  34560
  Copyright terms: Public domain W3C validator