Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrco Structured version   Visualization version   GIF version

Theorem ofrco 32562
Description: Function relation between function compositions. (Contributed by Thierry Arnoux, 15-Jan-2026.)
Hypotheses
Ref Expression
ofrco.1 (𝜑𝐹 Fn 𝐴)
ofrco.2 (𝜑𝐺 Fn 𝐴)
ofrco.3 (𝜑𝐻:𝐶𝐴)
ofrco.4 (𝜑𝐴𝑉)
ofrco.5 (𝜑𝐶𝑊)
ofrco.6 (𝜑𝐹r 𝑅𝐺)
Assertion
Ref Expression
ofrco (𝜑 → (𝐹𝐻) ∘r 𝑅(𝐺𝐻))

Proof of Theorem ofrco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
2 fveq2 6822 . . . . 5 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
31, 2breq12d 5105 . . . 4 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦) ↔ (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
4 ofrco.6 . . . . . 6 (𝜑𝐹r 𝑅𝐺)
5 ofrco.1 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
6 ofrco.2 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
7 ofrco.4 . . . . . . 7 (𝜑𝐴𝑉)
8 inidm 4178 . . . . . . 7 (𝐴𝐴) = 𝐴
9 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
115, 6, 7, 7, 8, 9, 10ofrfval 7623 . . . . . 6 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦)))
124, 11mpbid 232 . . . . 5 (𝜑 → ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦))
1312adantr 480 . . . 4 ((𝜑𝑥𝐶) → ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦))
14 ofrco.3 . . . . 5 (𝜑𝐻:𝐶𝐴)
1514ffvelcdmda 7018 . . . 4 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝐴)
163, 13, 15rspcdva 3578 . . 3 ((𝜑𝑥𝐶) → (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))
1716ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐶 (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))
18 fnfco 6689 . . . 4 ((𝐹 Fn 𝐴𝐻:𝐶𝐴) → (𝐹𝐻) Fn 𝐶)
195, 14, 18syl2anc 584 . . 3 (𝜑 → (𝐹𝐻) Fn 𝐶)
20 fnfco 6689 . . . 4 ((𝐺 Fn 𝐴𝐻:𝐶𝐴) → (𝐺𝐻) Fn 𝐶)
216, 14, 20syl2anc 584 . . 3 (𝜑 → (𝐺𝐻) Fn 𝐶)
22 ofrco.5 . . 3 (𝜑𝐶𝑊)
23 inidm 4178 . . 3 (𝐶𝐶) = 𝐶
2414adantr 480 . . . 4 ((𝜑𝑥𝐶) → 𝐻:𝐶𝐴)
25 simpr 484 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐶)
2624, 25fvco3d 6923 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
2724, 25fvco3d 6923 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
2819, 21, 22, 22, 23, 26, 27ofrfval 7623 . 2 (𝜑 → ((𝐹𝐻) ∘r 𝑅(𝐺𝐻) ↔ ∀𝑥𝐶 (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
2917, 28mpbird 257 1 (𝜑 → (𝐹𝐻) ∘r 𝑅(𝐺𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  r cofr 7612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ofr 7614
This theorem is referenced by:  mplvrpmrhm  33558
  Copyright terms: Public domain W3C validator