Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrco Structured version   Visualization version   GIF version

Theorem ofrco 32593
Description: Function relation between function compositions. (Contributed by Thierry Arnoux, 15-Jan-2026.)
Hypotheses
Ref Expression
ofrco.1 (𝜑𝐹 Fn 𝐴)
ofrco.2 (𝜑𝐺 Fn 𝐴)
ofrco.3 (𝜑𝐻:𝐶𝐴)
ofrco.4 (𝜑𝐴𝑉)
ofrco.5 (𝜑𝐶𝑊)
ofrco.6 (𝜑𝐹r 𝑅𝐺)
Assertion
Ref Expression
ofrco (𝜑 → (𝐹𝐻) ∘r 𝑅(𝐺𝐻))

Proof of Theorem ofrco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
2 fveq2 6822 . . . . 5 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
31, 2breq12d 5102 . . . 4 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦) ↔ (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
4 ofrco.6 . . . . . 6 (𝜑𝐹r 𝑅𝐺)
5 ofrco.1 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
6 ofrco.2 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
7 ofrco.4 . . . . . . 7 (𝜑𝐴𝑉)
8 inidm 4174 . . . . . . 7 (𝐴𝐴) = 𝐴
9 eqidd 2732 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2732 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
115, 6, 7, 7, 8, 9, 10ofrfval 7620 . . . . . 6 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦)))
124, 11mpbid 232 . . . . 5 (𝜑 → ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦))
1312adantr 480 . . . 4 ((𝜑𝑥𝐶) → ∀𝑦𝐴 (𝐹𝑦)𝑅(𝐺𝑦))
14 ofrco.3 . . . . 5 (𝜑𝐻:𝐶𝐴)
1514ffvelcdmda 7017 . . . 4 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝐴)
163, 13, 15rspcdva 3573 . . 3 ((𝜑𝑥𝐶) → (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))
1716ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝐶 (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))
18 fnfco 6688 . . . 4 ((𝐹 Fn 𝐴𝐻:𝐶𝐴) → (𝐹𝐻) Fn 𝐶)
195, 14, 18syl2anc 584 . . 3 (𝜑 → (𝐹𝐻) Fn 𝐶)
20 fnfco 6688 . . . 4 ((𝐺 Fn 𝐴𝐻:𝐶𝐴) → (𝐺𝐻) Fn 𝐶)
216, 14, 20syl2anc 584 . . 3 (𝜑 → (𝐺𝐻) Fn 𝐶)
22 ofrco.5 . . 3 (𝜑𝐶𝑊)
23 inidm 4174 . . 3 (𝐶𝐶) = 𝐶
2414adantr 480 . . . 4 ((𝜑𝑥𝐶) → 𝐻:𝐶𝐴)
25 simpr 484 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐶)
2624, 25fvco3d 6922 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
2724, 25fvco3d 6922 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
2819, 21, 22, 22, 23, 26, 27ofrfval 7620 . 2 (𝜑 → ((𝐹𝐻) ∘r 𝑅(𝐺𝐻) ↔ ∀𝑥𝐶 (𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
2917, 28mpbird 257 1 (𝜑 → (𝐹𝐻) ∘r 𝑅(𝐺𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  r cofr 7609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ofr 7611
This theorem is referenced by:  mplvrpmrhm  33577
  Copyright terms: Public domain W3C validator