![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om1bas | Structured version Visualization version GIF version |
Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
om1bas.o | β’ π = (π½ Ξ©1 π) |
om1bas.j | β’ (π β π½ β (TopOnβπ)) |
om1bas.y | β’ (π β π β π) |
om1bas.b | β’ (π β π΅ = (Baseβπ)) |
Ref | Expression |
---|---|
om1bas | β’ (π β π΅ = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1bas.b | . . 3 β’ (π β π΅ = (Baseβπ)) | |
2 | om1bas.o | . . . . 5 β’ π = (π½ Ξ©1 π) | |
3 | eqidd 2733 | . . . . 5 β’ (π β {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)} = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) | |
4 | eqidd 2733 | . . . . 5 β’ (π β (*πβπ½) = (*πβπ½)) | |
5 | eqidd 2733 | . . . . 5 β’ (π β (π½ βko II) = (π½ βko II)) | |
6 | om1bas.j | . . . . 5 β’ (π β π½ β (TopOnβπ)) | |
7 | om1bas.y | . . . . 5 β’ (π β π β π) | |
8 | 2, 3, 4, 5, 6, 7 | om1val 24770 | . . . 4 β’ (π β π = {β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©}) |
9 | 8 | fveq2d 6895 | . . 3 β’ (π β (Baseβπ) = (Baseβ{β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©})) |
10 | 1, 9 | eqtrd 2772 | . 2 β’ (π β π΅ = (Baseβ{β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©})) |
11 | ovex 7444 | . . . 4 β’ (II Cn π½) β V | |
12 | 11 | rabex 5332 | . . 3 β’ {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)} β V |
13 | eqid 2732 | . . . 4 β’ {β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©} = {β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©} | |
14 | 13 | topgrpbas 17311 | . . 3 β’ ({π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)} β V β {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)} = (Baseβ{β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©})) |
15 | 12, 14 | ax-mp 5 | . 2 β’ {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)} = (Baseβ{β¨(Baseβndx), {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}β©, β¨(+gβndx), (*πβπ½)β©, β¨(TopSetβndx), (π½ βko II)β©}) |
16 | 10, 15 | eqtr4di 2790 | 1 β’ (π β π΅ = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 {ctp 4632 β¨cop 4634 βcfv 6543 (class class class)co 7411 0cc0 11112 1c1 11113 ndxcnx 17130 Basecbs 17148 +gcplusg 17201 TopSetcts 17207 TopOnctopon 22632 Cn ccn 22948 βko cxko 23285 IIcii 24615 *πcpco 24740 Ξ©1 comi 24741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-tset 17220 df-topon 22633 df-om1 24746 |
This theorem is referenced by: om1elbas 24772 om1plusg 24774 om1tset 24775 |
Copyright terms: Public domain | W3C validator |