MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1bas Structured version   Visualization version   GIF version

Theorem om1bas 23629
Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
om1bas.b (𝜑𝐵 = (Base‘𝑂))
Assertion
Ref Expression
om1bas (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
Distinct variable groups:   𝑓,𝐽   𝜑,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑓)   𝑂(𝑓)

Proof of Theorem om1bas
StepHypRef Expression
1 om1bas.b . . 3 (𝜑𝐵 = (Base‘𝑂))
2 om1bas.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
3 eqidd 2822 . . . . 5 (𝜑 → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
4 eqidd 2822 . . . . 5 (𝜑 → (*𝑝𝐽) = (*𝑝𝐽))
5 eqidd 2822 . . . . 5 (𝜑 → (𝐽ko II) = (𝐽ko II))
6 om1bas.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 om1bas.y . . . . 5 (𝜑𝑌𝑋)
82, 3, 4, 5, 6, 7om1val 23628 . . . 4 (𝜑𝑂 = {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
98fveq2d 6668 . . 3 (𝜑 → (Base‘𝑂) = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
101, 9eqtrd 2856 . 2 (𝜑𝐵 = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
11 ovex 7183 . . . 4 (II Cn 𝐽) ∈ V
1211rabex 5227 . . 3 {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V
13 eqid 2821 . . . 4 {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩} = {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}
1413topgrpbas 16656 . . 3 ({𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
1512, 14ax-mp 5 . 2 {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
1610, 15syl6eqr 2874 1 (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  {ctp 4564  cop 4566  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532  ndxcnx 16474  Basecbs 16477  +gcplusg 16559  TopSetcts 16565  TopOnctopon 21512   Cn ccn 21826  ko cxko 22163  IIcii 23477  *𝑝cpco 23598   Ω1 comi 23599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-tset 16578  df-topon 21513  df-om1 23604
This theorem is referenced by:  om1elbas  23630  om1plusg  23632  om1tset  23633
  Copyright terms: Public domain W3C validator