Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om1bas | Structured version Visualization version GIF version |
Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
om1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
Ref | Expression |
---|---|
om1bas | ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1bas.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) | |
2 | om1bas.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
3 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) | |
4 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (*𝑝‘𝐽) = (*𝑝‘𝐽)) | |
5 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝐽 ↑ko II) = (𝐽 ↑ko II)) | |
6 | om1bas.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | om1bas.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
8 | 2, 3, 4, 5, 6, 7 | om1val 24299 | . . . 4 ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉}) |
9 | 8 | fveq2d 6829 | . . 3 ⊢ (𝜑 → (Base‘𝑂) = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉})) |
10 | 1, 9 | eqtrd 2776 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉})) |
11 | ovex 7370 | . . . 4 ⊢ (II Cn 𝐽) ∈ V | |
12 | 11 | rabex 5276 | . . 3 ⊢ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V |
13 | eqid 2736 | . . . 4 ⊢ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉} = {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉} | |
14 | 13 | topgrpbas 17169 | . . 3 ⊢ ({𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉})) |
15 | 12, 14 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉}) |
16 | 10, 15 | eqtr4di 2794 | 1 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 {ctp 4577 〈cop 4579 ‘cfv 6479 (class class class)co 7337 0cc0 10972 1c1 10973 ndxcnx 16991 Basecbs 17009 +gcplusg 17059 TopSetcts 17065 TopOnctopon 22165 Cn ccn 22481 ↑ko cxko 22818 IIcii 24144 *𝑝cpco 24269 Ω1 comi 24270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-tset 17078 df-topon 22166 df-om1 24275 |
This theorem is referenced by: om1elbas 24301 om1plusg 24303 om1tset 24304 |
Copyright terms: Public domain | W3C validator |