Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1tset Structured version   Visualization version   GIF version

Theorem om1tset 23573
 Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
Assertion
Ref Expression
om1tset (𝜑 → (𝐽ko II) = (TopSet‘𝑂))

Proof of Theorem om1tset
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 om1bas.o . . . 4 𝑂 = (𝐽 Ω1 𝑌)
2 om1bas.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 om1bas.y . . . . 5 (𝜑𝑌𝑋)
4 eqidd 2827 . . . . 5 (𝜑 → (Base‘𝑂) = (Base‘𝑂))
51, 2, 3, 4om1bas 23569 . . . 4 (𝜑 → (Base‘𝑂) = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
6 eqidd 2827 . . . 4 (𝜑 → (*𝑝𝐽) = (*𝑝𝐽))
7 eqidd 2827 . . . 4 (𝜑 → (𝐽ko II) = (𝐽ko II))
81, 5, 6, 7, 2, 3om1val 23568 . . 3 (𝜑𝑂 = {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
98fveq2d 6673 . 2 (𝜑 → (TopSet‘𝑂) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
10 ovex 7183 . . 3 (𝐽ko II) ∈ V
11 eqid 2826 . . . 4 {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩} = {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}
1211topgrptset 16659 . . 3 ((𝐽ko II) ∈ V → (𝐽ko II) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
1310, 12ax-mp 5 . 2 (𝐽ko II) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
149, 13syl6reqr 2880 1 (𝜑 → (𝐽ko II) = (TopSet‘𝑂))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107  Vcvv 3500  {ctp 4568  ⟨cop 4570  ‘cfv 6354  (class class class)co 7150  ndxcnx 16475  Basecbs 16478  +gcplusg 16560  TopSetcts 16566  TopOnctopon 21453   ↑ko cxko 22104  IIcii 23417  *𝑝cpco 23538   Ω1 comi 23539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-tset 16579  df-topon 21454  df-om1 23544 This theorem is referenced by:  om1opn  23574
 Copyright terms: Public domain W3C validator