MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1tset Structured version   Visualization version   GIF version

Theorem om1tset 23159
Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
Assertion
Ref Expression
om1tset (𝜑 → (𝐽 ^ko II) = (TopSet‘𝑂))

Proof of Theorem om1tset
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 om1bas.o . . . 4 𝑂 = (𝐽 Ω1 𝑌)
2 om1bas.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 om1bas.y . . . . 5 (𝜑𝑌𝑋)
4 eqidd 2798 . . . . 5 (𝜑 → (Base‘𝑂) = (Base‘𝑂))
51, 2, 3, 4om1bas 23155 . . . 4 (𝜑 → (Base‘𝑂) = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
6 eqidd 2798 . . . 4 (𝜑 → (*𝑝𝐽) = (*𝑝𝐽))
7 eqidd 2798 . . . 4 (𝜑 → (𝐽 ^ko II) = (𝐽 ^ko II))
81, 5, 6, 7, 2, 3om1val 23154 . . 3 (𝜑𝑂 = {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩})
98fveq2d 6413 . 2 (𝜑 → (TopSet‘𝑂) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩}))
10 ovex 6908 . . 3 (𝐽 ^ko II) ∈ V
11 eqid 2797 . . . 4 {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩} = {⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩}
1211topgrptset 16363 . . 3 ((𝐽 ^ko II) ∈ V → (𝐽 ^ko II) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩}))
1310, 12ax-mp 5 . 2 (𝐽 ^ko II) = (TopSet‘{⟨(Base‘ndx), (Base‘𝑂)⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽 ^ko II)⟩})
149, 13syl6reqr 2850 1 (𝜑 → (𝐽 ^ko II) = (TopSet‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  Vcvv 3383  {ctp 4370  cop 4372  cfv 6099  (class class class)co 6876  ndxcnx 16178  Basecbs 16181  +gcplusg 16264  TopSetcts 16270  TopOnctopon 21040   ^ko cxko 21690  IIcii 23003  *𝑝cpco 23124   Ω1 comi 23125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-tset 16283  df-topon 21041  df-om1 23130
This theorem is referenced by:  om1opn  23160
  Copyright terms: Public domain W3C validator