![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om1tset | Structured version Visualization version GIF version |
Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
om1tset | ⊢ (𝜑 → (𝐽 ^ko II) = (TopSet‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1bas.o | . . . 4 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
2 | om1bas.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | om1bas.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
4 | eqidd 2798 | . . . . 5 ⊢ (𝜑 → (Base‘𝑂) = (Base‘𝑂)) | |
5 | 1, 2, 3, 4 | om1bas 23155 | . . . 4 ⊢ (𝜑 → (Base‘𝑂) = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
6 | eqidd 2798 | . . . 4 ⊢ (𝜑 → (*𝑝‘𝐽) = (*𝑝‘𝐽)) | |
7 | eqidd 2798 | . . . 4 ⊢ (𝜑 → (𝐽 ^ko II) = (𝐽 ^ko II)) | |
8 | 1, 5, 6, 7, 2, 3 | om1val 23154 | . . 3 ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉}) |
9 | 8 | fveq2d 6413 | . 2 ⊢ (𝜑 → (TopSet‘𝑂) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉})) |
10 | ovex 6908 | . . 3 ⊢ (𝐽 ^ko II) ∈ V | |
11 | eqid 2797 | . . . 4 ⊢ {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉} = {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉} | |
12 | 11 | topgrptset 16363 | . . 3 ⊢ ((𝐽 ^ko II) ∈ V → (𝐽 ^ko II) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉})) |
13 | 10, 12 | ax-mp 5 | . 2 ⊢ (𝐽 ^ko II) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉}) |
14 | 9, 13 | syl6reqr 2850 | 1 ⊢ (𝜑 → (𝐽 ^ko II) = (TopSet‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3383 {ctp 4370 〈cop 4372 ‘cfv 6099 (class class class)co 6876 ndxcnx 16178 Basecbs 16181 +gcplusg 16264 TopSetcts 16270 TopOnctopon 21040 ^ko cxko 21690 IIcii 23003 *𝑝cpco 23124 Ω1 comi 23125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-plusg 16277 df-tset 16283 df-topon 21041 df-om1 23130 |
This theorem is referenced by: om1opn 23160 |
Copyright terms: Public domain | W3C validator |