| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om1tset | Structured version Visualization version GIF version | ||
| Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| om1tset | ⊢ (𝜑 → (𝐽 ↑ko II) = (TopSet‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7388 | . . 3 ⊢ (𝐽 ↑ko II) ∈ V | |
| 2 | eqid 2733 | . . . 4 ⊢ {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉} = {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉} | |
| 3 | 2 | topgrptset 17275 | . . 3 ⊢ ((𝐽 ↑ko II) ∈ V → (𝐽 ↑ko II) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉})) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐽 ↑ko II) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉}) |
| 5 | om1bas.o | . . . 4 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 6 | om1bas.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 7 | om1bas.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 8 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (Base‘𝑂) = (Base‘𝑂)) | |
| 9 | 5, 6, 7, 8 | om1bas 24978 | . . . 4 ⊢ (𝜑 → (Base‘𝑂) = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
| 10 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (*𝑝‘𝐽) = (*𝑝‘𝐽)) | |
| 11 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝐽 ↑ko II) = (𝐽 ↑ko II)) | |
| 12 | 5, 9, 10, 11, 6, 7 | om1val 24977 | . . 3 ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉}) |
| 13 | 12 | fveq2d 6835 | . 2 ⊢ (𝜑 → (TopSet‘𝑂) = (TopSet‘{〈(Base‘ndx), (Base‘𝑂)〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ↑ko II)〉})) |
| 14 | 4, 13 | eqtr4id 2787 | 1 ⊢ (𝜑 → (𝐽 ↑ko II) = (TopSet‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {ctp 4581 〈cop 4583 ‘cfv 6489 (class class class)co 7355 ndxcnx 17111 Basecbs 17127 +gcplusg 17168 TopSetcts 17174 TopOnctopon 22845 ↑ko cxko 23496 IIcii 24815 *𝑝cpco 24947 Ω1 comi 24948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-tset 17187 df-topon 22846 df-om1 24953 |
| This theorem is referenced by: om1opn 24983 |
| Copyright terms: Public domain | W3C validator |