![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcepi | Structured version Visualization version GIF version |
Description: An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcepi.e | ⊢ 𝐸 = (Epi‘𝑂) |
oppcepi.m | ⊢ 𝑀 = (Mono‘𝐶) |
Ref | Expression |
---|---|
oppcepi | ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcepi.m | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
2 | oppcmon.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
3 | 2 | 2oppchomf 17784 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
5 | 2 | 2oppccomf 17785 | . . . . . 6 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
7 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 2 | oppccat 17782 | . . . . . . 7 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ Cat) |
10 | eqid 2740 | . . . . . . 7 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
11 | 10 | oppccat 17782 | . . . . . 6 ⊢ (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppCat‘𝑂) ∈ Cat) |
13 | 4, 6, 7, 12 | monpropd 17798 | . . . 4 ⊢ (𝜑 → (Mono‘𝐶) = (Mono‘(oppCat‘𝑂))) |
14 | 1, 13 | eqtrid 2792 | . . 3 ⊢ (𝜑 → 𝑀 = (Mono‘(oppCat‘𝑂))) |
15 | 14 | oveqd 7465 | . 2 ⊢ (𝜑 → (𝑌𝑀𝑋) = (𝑌(Mono‘(oppCat‘𝑂))𝑋)) |
16 | eqid 2740 | . . 3 ⊢ (Mono‘(oppCat‘𝑂)) = (Mono‘(oppCat‘𝑂)) | |
17 | oppcepi.e | . . 3 ⊢ 𝐸 = (Epi‘𝑂) | |
18 | 10, 9, 16, 17 | oppcmon 17799 | . 2 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝑂))𝑋) = (𝑋𝐸𝑌)) |
19 | 15, 18 | eqtr2d 2781 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Catccat 17722 Homf chomf 17724 compfccomf 17725 oppCatcoppc 17769 Monocmon 17789 Epicepi 17790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-homf 17728 df-comf 17729 df-oppc 17770 df-mon 17791 df-epi 17792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |