MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcepi Structured version   Visualization version   GIF version

Theorem oppcepi 16788
Description: An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCat‘𝐶)
oppcmon.c (𝜑𝐶 ∈ Cat)
oppcepi.e 𝐸 = (Epi‘𝑂)
oppcepi.m 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
oppcepi (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋))

Proof of Theorem oppcepi
StepHypRef Expression
1 oppcepi.m . . . 4 𝑀 = (Mono‘𝐶)
2 oppcmon.o . . . . . . 7 𝑂 = (oppCat‘𝐶)
322oppchomf 16773 . . . . . 6 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
43a1i 11 . . . . 5 (𝜑 → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
522oppccomf 16774 . . . . . 6 (compf𝐶) = (compf‘(oppCat‘𝑂))
65a1i 11 . . . . 5 (𝜑 → (compf𝐶) = (compf‘(oppCat‘𝑂)))
7 oppcmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
82oppccat 16771 . . . . . . 7 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
97, 8syl 17 . . . . . 6 (𝜑𝑂 ∈ Cat)
10 eqid 2778 . . . . . . 7 (oppCat‘𝑂) = (oppCat‘𝑂)
1110oppccat 16771 . . . . . 6 (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat)
129, 11syl 17 . . . . 5 (𝜑 → (oppCat‘𝑂) ∈ Cat)
134, 6, 7, 12monpropd 16786 . . . 4 (𝜑 → (Mono‘𝐶) = (Mono‘(oppCat‘𝑂)))
141, 13syl5eq 2826 . . 3 (𝜑𝑀 = (Mono‘(oppCat‘𝑂)))
1514oveqd 6941 . 2 (𝜑 → (𝑌𝑀𝑋) = (𝑌(Mono‘(oppCat‘𝑂))𝑋))
16 eqid 2778 . . 3 (Mono‘(oppCat‘𝑂)) = (Mono‘(oppCat‘𝑂))
17 oppcepi.e . . 3 𝐸 = (Epi‘𝑂)
1810, 9, 16, 17oppcmon 16787 . 2 (𝜑 → (𝑌(Mono‘(oppCat‘𝑂))𝑋) = (𝑋𝐸𝑌))
1915, 18eqtr2d 2815 1 (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  Catccat 16714  Homf chomf 16716  compfccomf 16717  oppCatcoppc 16760  Monocmon 16777  Epicepi 16778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-hom 16366  df-cco 16367  df-cat 16718  df-cid 16719  df-homf 16720  df-comf 16721  df-oppc 16761  df-mon 16779  df-epi 16780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator