Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isepi | Structured version Visualization version GIF version |
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isepi | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 17428 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2738 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
5 | eqid 2738 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
6 | eqid 2738 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
7 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 1 | oppccat 17433 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
10 | isepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | isepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 3, 4, 5, 6, 9, 10, 11 | ismon 17445 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))))) |
13 | isepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 7, 6, 13 | oppcmon 17450 | . . 3 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 14 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌))) |
16 | isepi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16, 1 | oppchom 17425 | . . . . 5 ⊢ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)) |
19 | 18 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌))) |
20 | 16, 1 | oppchom 17425 | . . . . . . . 8 ⊢ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)) |
22 | isepi.o | . . . . . . . 8 ⊢ · = (comp‘𝐶) | |
23 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) | |
24 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
25 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 17427 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) |
27 | 21, 26 | mpteq12dv 5165 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
28 | 27 | cnveqd 5784 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
29 | 28 | funeqd 6456 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
30 | 29 | ralbidva 3111 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
31 | 19, 30 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
32 | 12, 15, 31 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 ↦ cmpt 5157 ◡ccnv 5588 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 oppCatcoppc 17420 Monocmon 17440 Epicepi 17441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-cat 17377 df-cid 17378 df-oppc 17421 df-mon 17442 df-epi 17443 |
This theorem is referenced by: isepi2 17453 epihom 17454 |
Copyright terms: Public domain | W3C validator |