MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isepi Structured version   Visualization version   GIF version

Theorem isepi 17788
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isepi.b 𝐵 = (Base‘𝐶)
isepi.h 𝐻 = (Hom ‘𝐶)
isepi.o · = (comp‘𝐶)
isepi.e 𝐸 = (Epi‘𝐶)
isepi.c (𝜑𝐶 ∈ Cat)
isepi.x (𝜑𝑋𝐵)
isepi.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isepi (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝐶,𝑔,𝑧   𝑔,𝐻,𝑧   · ,𝑔,𝑧   𝑔,𝑋,𝑧   𝑔,𝐹,𝑧   𝜑,𝑔,𝑧   𝑔,𝑌,𝑧
Allowed substitution hints:   𝐸(𝑧,𝑔)

Proof of Theorem isepi
StepHypRef Expression
1 eqid 2735 . . . 4 (oppCat‘𝐶) = (oppCat‘𝐶)
2 isepi.b . . . 4 𝐵 = (Base‘𝐶)
31, 2oppcbas 17764 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
4 eqid 2735 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
5 eqid 2735 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
6 eqid 2735 . . 3 (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶))
7 isepi.c . . . 4 (𝜑𝐶 ∈ Cat)
81oppccat 17769 . . . 4 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
97, 8syl 17 . . 3 (𝜑 → (oppCat‘𝐶) ∈ Cat)
10 isepi.y . . 3 (𝜑𝑌𝐵)
11 isepi.x . . 3 (𝜑𝑋𝐵)
123, 4, 5, 6, 9, 10, 11ismon 17781 . 2 (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔)))))
13 isepi.e . . . 4 𝐸 = (Epi‘𝐶)
141, 7, 6, 13oppcmon 17786 . . 3 (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌))
1514eleq2d 2825 . 2 (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌)))
16 isepi.h . . . . . 6 𝐻 = (Hom ‘𝐶)
1716, 1oppchom 17761 . . . . 5 (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)
1817a1i 11 . . . 4 (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌))
1918eleq2d 2825 . . 3 (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌)))
2016, 1oppchom 17761 . . . . . . . 8 (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)
2120a1i 11 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧))
22 isepi.o . . . . . . . 8 · = (comp‘𝐶)
23 simpr 484 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧𝐵)
2410adantr 480 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑌𝐵)
2511adantr 480 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑋𝐵)
262, 22, 1, 23, 24, 25oppcco 17763 . . . . . . 7 ((𝜑𝑧𝐵) → (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))
2721, 26mpteq12dv 5239 . . . . . 6 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))
2827cnveqd 5889 . . . . 5 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))
2928funeqd 6590 . . . 4 ((𝜑𝑧𝐵) → (Fun (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
3029ralbidva 3174 . . 3 (𝜑 → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
3119, 30anbi12d 632 . 2 (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(⟨𝑧, 𝑌⟩(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
3212, 15, 313bitr3d 309 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637  cmpt 5231  ccnv 5688  Fun wfun 6557  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  oppCatcoppc 17756  Monocmon 17776  Epicepi 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-hom 17322  df-cco 17323  df-cat 17713  df-cid 17714  df-oppc 17757  df-mon 17778  df-epi 17779
This theorem is referenced by:  isepi2  17789  epihom  17790
  Copyright terms: Public domain W3C validator