![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isepi | Structured version Visualization version GIF version |
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isepi | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 17777 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2740 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
5 | eqid 2740 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
6 | eqid 2740 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
7 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 1 | oppccat 17782 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
10 | isepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | isepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 3, 4, 5, 6, 9, 10, 11 | ismon 17794 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))))) |
13 | isepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 7, 6, 13 | oppcmon 17799 | . . 3 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 14 | eleq2d 2830 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌))) |
16 | isepi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16, 1 | oppchom 17774 | . . . . 5 ⊢ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)) |
19 | 18 | eleq2d 2830 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌))) |
20 | 16, 1 | oppchom 17774 | . . . . . . . 8 ⊢ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)) |
22 | isepi.o | . . . . . . . 8 ⊢ · = (comp‘𝐶) | |
23 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) | |
24 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
25 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 17776 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) |
27 | 21, 26 | mpteq12dv 5257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
28 | 27 | cnveqd 5900 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
29 | 28 | funeqd 6600 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
30 | 29 | ralbidva 3182 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
31 | 19, 30 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
32 | 12, 15, 31 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 〈cop 4654 ↦ cmpt 5249 ◡ccnv 5699 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 oppCatcoppc 17769 Monocmon 17789 Epicepi 17790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-oppc 17770 df-mon 17791 df-epi 17792 |
This theorem is referenced by: isepi2 17802 epihom 17803 |
Copyright terms: Public domain | W3C validator |