![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isepi | Structured version Visualization version GIF version |
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isepi | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16763 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2778 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
5 | eqid 2778 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
6 | eqid 2778 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
7 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 1 | oppccat 16767 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
10 | isepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | isepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 3, 4, 5, 6, 9, 10, 11 | ismon 16778 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))))) |
13 | isepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 7, 6, 13 | oppcmon 16783 | . . 3 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 14 | eleq2d 2845 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌))) |
16 | isepi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16, 1 | oppchom 16760 | . . . . 5 ⊢ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)) |
19 | 18 | eleq2d 2845 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌))) |
20 | 16, 1 | oppchom 16760 | . . . . . . . 8 ⊢ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)) |
22 | isepi.o | . . . . . . . 8 ⊢ · = (comp‘𝐶) | |
23 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) | |
24 | 10 | adantr 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
25 | 11 | adantr 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 16762 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) |
27 | 21, 26 | mpteq12dv 4969 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
28 | 27 | cnveqd 5543 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
29 | 28 | funeqd 6157 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
30 | 29 | ralbidva 3167 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
31 | 19, 30 | anbi12d 624 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
32 | 12, 15, 31 | 3bitr3d 301 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 〈cop 4404 ↦ cmpt 4965 ◡ccnv 5354 Fun wfun 6129 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Hom chom 16349 compcco 16350 Catccat 16710 oppCatcoppc 16756 Monocmon 16773 Epicepi 16774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-hom 16362 df-cco 16363 df-cat 16714 df-cid 16715 df-oppc 16757 df-mon 16775 df-epi 16776 |
This theorem is referenced by: isepi2 16786 epihom 16787 |
Copyright terms: Public domain | W3C validator |