Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(oppCatβπΆ) =
(oppCatβπΆ) |
2 | | isepi.b |
. . . 4
β’ π΅ = (BaseβπΆ) |
3 | 1, 2 | oppcbas 17667 |
. . 3
β’ π΅ =
(Baseβ(oppCatβπΆ)) |
4 | | eqid 2732 |
. . 3
β’ (Hom
β(oppCatβπΆ)) =
(Hom β(oppCatβπΆ)) |
5 | | eqid 2732 |
. . 3
β’
(compβ(oppCatβπΆ)) = (compβ(oppCatβπΆ)) |
6 | | eqid 2732 |
. . 3
β’
(Monoβ(oppCatβπΆ)) = (Monoβ(oppCatβπΆ)) |
7 | | isepi.c |
. . . 4
β’ (π β πΆ β Cat) |
8 | 1 | oppccat 17672 |
. . . 4
β’ (πΆ β Cat β
(oppCatβπΆ) β
Cat) |
9 | 7, 8 | syl 17 |
. . 3
β’ (π β (oppCatβπΆ) β Cat) |
10 | | isepi.y |
. . 3
β’ (π β π β π΅) |
11 | | isepi.x |
. . 3
β’ (π β π β π΅) |
12 | 3, 4, 5, 6, 9, 10,
11 | ismon 17684 |
. 2
β’ (π β (πΉ β (π(Monoβ(oppCatβπΆ))π) β (πΉ β (π(Hom β(oppCatβπΆ))π) β§ βπ§ β π΅ Fun β‘(π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π))))) |
13 | | isepi.e |
. . . 4
β’ πΈ = (EpiβπΆ) |
14 | 1, 7, 6, 13 | oppcmon 17689 |
. . 3
β’ (π β (π(Monoβ(oppCatβπΆ))π) = (ππΈπ)) |
15 | 14 | eleq2d 2819 |
. 2
β’ (π β (πΉ β (π(Monoβ(oppCatβπΆ))π) β πΉ β (ππΈπ))) |
16 | | isepi.h |
. . . . . 6
β’ π» = (Hom βπΆ) |
17 | 16, 1 | oppchom 17664 |
. . . . 5
β’ (π(Hom β(oppCatβπΆ))π) = (ππ»π) |
18 | 17 | a1i 11 |
. . . 4
β’ (π β (π(Hom β(oppCatβπΆ))π) = (ππ»π)) |
19 | 18 | eleq2d 2819 |
. . 3
β’ (π β (πΉ β (π(Hom β(oppCatβπΆ))π) β πΉ β (ππ»π))) |
20 | 16, 1 | oppchom 17664 |
. . . . . . . 8
β’ (π§(Hom β(oppCatβπΆ))π) = (ππ»π§) |
21 | 20 | a1i 11 |
. . . . . . 7
β’ ((π β§ π§ β π΅) β (π§(Hom β(oppCatβπΆ))π) = (ππ»π§)) |
22 | | isepi.o |
. . . . . . . 8
β’ Β· =
(compβπΆ) |
23 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π§ β π΅) β π§ β π΅) |
24 | 10 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β π΅) β π β π΅) |
25 | 11 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β π΅) β π β π΅) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 17666 |
. . . . . . 7
β’ ((π β§ π§ β π΅) β (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π) = (π(β¨π, πβ© Β· π§)πΉ)) |
27 | 21, 26 | mpteq12dv 5239 |
. . . . . 6
β’ ((π β§ π§ β π΅) β (π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π)) = (π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ))) |
28 | 27 | cnveqd 5875 |
. . . . 5
β’ ((π β§ π§ β π΅) β β‘(π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π)) = β‘(π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ))) |
29 | 28 | funeqd 6570 |
. . . 4
β’ ((π β§ π§ β π΅) β (Fun β‘(π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π)) β Fun β‘(π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ)))) |
30 | 29 | ralbidva 3175 |
. . 3
β’ (π β (βπ§ β π΅ Fun β‘(π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π)) β βπ§ β π΅ Fun β‘(π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ)))) |
31 | 19, 30 | anbi12d 631 |
. 2
β’ (π β ((πΉ β (π(Hom β(oppCatβπΆ))π) β§ βπ§ β π΅ Fun β‘(π β (π§(Hom β(oppCatβπΆ))π) β¦ (πΉ(β¨π§, πβ©(compβ(oppCatβπΆ))π)π))) β (πΉ β (ππ»π) β§ βπ§ β π΅ Fun β‘(π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ))))) |
32 | 12, 15, 31 | 3bitr3d 308 |
1
β’ (π β (πΉ β (ππΈπ) β (πΉ β (ππ»π) β§ βπ§ β π΅ Fun β‘(π β (ππ»π§) β¦ (π(β¨π, πβ© Β· π§)πΉ))))) |