| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version | ||
| Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
| isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isepi.o | ⊢ · = (comp‘𝐶) |
| isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
| isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| epii.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| epii.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
| epii.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| epii.k | ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| epii | ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isepi.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 3 | eqid 2735 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
| 4 | epii.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | isepi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isepi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | oppcco 17729 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 8 | 1, 2, 3, 4, 5, 6 | oppcco 17729 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 9 | 7, 8 | eqeq12d 2751 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹))) |
| 10 | 3, 1 | oppcbas 17730 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
| 11 | eqid 2735 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
| 12 | eqid 2735 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
| 13 | eqid 2735 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
| 14 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 3 | oppccat 17734 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
| 17 | epii.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
| 18 | isepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
| 19 | 3, 14, 13, 18 | oppcmon 17751 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
| 20 | 17, 19 | eleqtrrd 2837 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
| 21 | epii.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 22 | isepi.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 23 | 22, 3 | oppchom 17727 | . . . 4 ⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑍) |
| 24 | 21, 23 | eleqtrrdi 2845 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
| 25 | epii.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) | |
| 26 | 25, 23 | eleqtrrdi 2845 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
| 27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 17749 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ 𝐺 = 𝐾)) |
| 28 | 9, 27 | bitr3d 281 | 1 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 oppCatcoppc 17723 Monocmon 17741 Epicepi 17742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-hom 17295 df-cco 17296 df-cat 17680 df-cid 17681 df-oppc 17724 df-mon 17743 df-epi 17744 |
| This theorem is referenced by: setcepi 18101 |
| Copyright terms: Public domain | W3C validator |