![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version |
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
epii.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
epii.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
epii.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
epii.k | ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
epii | ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isepi.o | . . . 4 ⊢ · = (comp‘𝐶) | |
3 | eqid 2731 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
4 | epii.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | isepi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isepi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | oppcco 17669 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
8 | 1, 2, 3, 4, 5, 6 | oppcco 17669 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
9 | 7, 8 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹))) |
10 | 3, 1 | oppcbas 17670 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
11 | eqid 2731 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
12 | eqid 2731 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
13 | eqid 2731 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
14 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | 3 | oppccat 17675 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
17 | epii.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
18 | isepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
19 | 3, 14, 13, 18 | oppcmon 17692 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
20 | 17, 19 | eleqtrrd 2835 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
21 | epii.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
22 | isepi.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
23 | 22, 3 | oppchom 17667 | . . . 4 ⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑍) |
24 | 21, 23 | eleqtrrdi 2843 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
25 | epii.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) | |
26 | 25, 23 | eleqtrrdi 2843 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 17690 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ 𝐺 = 𝐾)) |
28 | 9, 27 | bitr3d 281 | 1 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 〈cop 4634 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 Hom chom 17215 compcco 17216 Catccat 17615 oppCatcoppc 17662 Monocmon 17682 Epicepi 17683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-hom 17228 df-cco 17229 df-cat 17619 df-cid 17620 df-oppc 17663 df-mon 17684 df-epi 17685 |
This theorem is referenced by: setcepi 18048 |
Copyright terms: Public domain | W3C validator |