| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version | ||
| Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
| isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isepi.o | ⊢ · = (comp‘𝐶) |
| isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
| isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| epii.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| epii.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
| epii.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| epii.k | ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| epii | ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isepi.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 3 | eqid 2731 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
| 4 | epii.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | isepi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isepi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | oppcco 17620 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 8 | 1, 2, 3, 4, 5, 6 | oppcco 17620 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 9 | 7, 8 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹))) |
| 10 | 3, 1 | oppcbas 17621 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
| 11 | eqid 2731 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
| 12 | eqid 2731 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
| 13 | eqid 2731 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
| 14 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 3 | oppccat 17625 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
| 17 | epii.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
| 18 | isepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
| 19 | 3, 14, 13, 18 | oppcmon 17642 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
| 20 | 17, 19 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
| 21 | epii.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 22 | isepi.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 23 | 22, 3 | oppchom 17618 | . . . 4 ⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑍) |
| 24 | 21, 23 | eleqtrrdi 2842 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
| 25 | epii.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) | |
| 26 | 25, 23 | eleqtrrdi 2842 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
| 27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 17640 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ 𝐺 = 𝐾)) |
| 28 | 9, 27 | bitr3d 281 | 1 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 oppCatcoppc 17614 Monocmon 17632 Epicepi 17633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-oppc 17615 df-mon 17634 df-epi 17635 |
| This theorem is referenced by: setcepi 17992 |
| Copyright terms: Public domain | W3C validator |