![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version |
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
epii.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
epii.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
epii.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
epii.k | ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
epii | ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isepi.o | . . . 4 ⊢ · = (comp‘𝐶) | |
3 | eqid 2798 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
4 | epii.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | isepi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isepi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | oppcco 16688 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
8 | 1, 2, 3, 4, 5, 6 | oppcco 16688 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
9 | 7, 8 | eqeq12d 2813 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹))) |
10 | 3, 1 | oppcbas 16689 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
11 | eqid 2798 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
12 | eqid 2798 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
13 | eqid 2798 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
14 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | 3 | oppccat 16693 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
17 | epii.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
18 | isepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
19 | 3, 14, 13, 18 | oppcmon 16709 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
20 | 17, 19 | eleqtrrd 2880 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
21 | epii.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
22 | isepi.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
23 | 22, 3 | oppchom 16686 | . . . 4 ⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑍) |
24 | 21, 23 | syl6eleqr 2888 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
25 | epii.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) | |
26 | 25, 23 | syl6eleqr 2888 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 16707 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ 𝐺 = 𝐾)) |
28 | 9, 27 | bitr3d 273 | 1 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 〈cop 4373 ‘cfv 6100 (class class class)co 6877 Basecbs 16181 Hom chom 16275 compcco 16276 Catccat 16636 oppCatcoppc 16682 Monocmon 16699 Epicepi 16700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-tpos 7589 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-hom 16288 df-cco 16289 df-cat 16640 df-cid 16641 df-oppc 16683 df-mon 16701 df-epi 16702 |
This theorem is referenced by: setcepi 17049 |
Copyright terms: Public domain | W3C validator |