![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version |
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | β’ π΅ = (BaseβπΆ) |
isepi.h | β’ π» = (Hom βπΆ) |
isepi.o | β’ Β· = (compβπΆ) |
isepi.e | β’ πΈ = (EpiβπΆ) |
isepi.c | β’ (π β πΆ β Cat) |
isepi.x | β’ (π β π β π΅) |
isepi.y | β’ (π β π β π΅) |
epii.z | β’ (π β π β π΅) |
epii.f | β’ (π β πΉ β (ππΈπ)) |
epii.g | β’ (π β πΊ β (ππ»π)) |
epii.k | β’ (π β πΎ β (ππ»π)) |
Ref | Expression |
---|---|
epii | β’ (π β ((πΊ(β¨π, πβ© Β· π)πΉ) = (πΎ(β¨π, πβ© Β· π)πΉ) β πΊ = πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isepi.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | isepi.o | . . . 4 β’ Β· = (compβπΆ) | |
3 | eqid 2733 | . . . 4 β’ (oppCatβπΆ) = (oppCatβπΆ) | |
4 | epii.z | . . . 4 β’ (π β π β π΅) | |
5 | isepi.y | . . . 4 β’ (π β π β π΅) | |
6 | isepi.x | . . . 4 β’ (π β π β π΅) | |
7 | 1, 2, 3, 4, 5, 6 | oppcco 17662 | . . 3 β’ (π β (πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ) = (πΊ(β¨π, πβ© Β· π)πΉ)) |
8 | 1, 2, 3, 4, 5, 6 | oppcco 17662 | . . 3 β’ (π β (πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΎ) = (πΎ(β¨π, πβ© Β· π)πΉ)) |
9 | 7, 8 | eqeq12d 2749 | . 2 β’ (π β ((πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ) = (πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΎ) β (πΊ(β¨π, πβ© Β· π)πΉ) = (πΎ(β¨π, πβ© Β· π)πΉ))) |
10 | 3, 1 | oppcbas 17663 | . . 3 β’ π΅ = (Baseβ(oppCatβπΆ)) |
11 | eqid 2733 | . . 3 β’ (Hom β(oppCatβπΆ)) = (Hom β(oppCatβπΆ)) | |
12 | eqid 2733 | . . 3 β’ (compβ(oppCatβπΆ)) = (compβ(oppCatβπΆ)) | |
13 | eqid 2733 | . . 3 β’ (Monoβ(oppCatβπΆ)) = (Monoβ(oppCatβπΆ)) | |
14 | isepi.c | . . . 4 β’ (π β πΆ β Cat) | |
15 | 3 | oppccat 17668 | . . . 4 β’ (πΆ β Cat β (oppCatβπΆ) β Cat) |
16 | 14, 15 | syl 17 | . . 3 β’ (π β (oppCatβπΆ) β Cat) |
17 | epii.f | . . . 4 β’ (π β πΉ β (ππΈπ)) | |
18 | isepi.e | . . . . 5 β’ πΈ = (EpiβπΆ) | |
19 | 3, 14, 13, 18 | oppcmon 17685 | . . . 4 β’ (π β (π(Monoβ(oppCatβπΆ))π) = (ππΈπ)) |
20 | 17, 19 | eleqtrrd 2837 | . . 3 β’ (π β πΉ β (π(Monoβ(oppCatβπΆ))π)) |
21 | epii.g | . . . 4 β’ (π β πΊ β (ππ»π)) | |
22 | isepi.h | . . . . 5 β’ π» = (Hom βπΆ) | |
23 | 22, 3 | oppchom 17660 | . . . 4 β’ (π(Hom β(oppCatβπΆ))π) = (ππ»π) |
24 | 21, 23 | eleqtrrdi 2845 | . . 3 β’ (π β πΊ β (π(Hom β(oppCatβπΆ))π)) |
25 | epii.k | . . . 4 β’ (π β πΎ β (ππ»π)) | |
26 | 25, 23 | eleqtrrdi 2845 | . . 3 β’ (π β πΎ β (π(Hom β(oppCatβπΆ))π)) |
27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 17683 | . 2 β’ (π β ((πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ) = (πΉ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΎ) β πΊ = πΎ)) |
28 | 9, 27 | bitr3d 281 | 1 β’ (π β ((πΊ(β¨π, πβ© Β· π)πΉ) = (πΎ(β¨π, πβ© Β· π)πΉ) β πΊ = πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β¨cop 4635 βcfv 6544 (class class class)co 7409 Basecbs 17144 Hom chom 17208 compcco 17209 Catccat 17608 oppCatcoppc 17655 Monocmon 17675 Epicepi 17676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-cat 17612 df-cid 17613 df-oppc 17656 df-mon 17677 df-epi 17678 |
This theorem is referenced by: setcepi 18038 |
Copyright terms: Public domain | W3C validator |