Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epii | Structured version Visualization version GIF version |
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
epii.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
epii.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
epii.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
epii.k | ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
epii | ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isepi.o | . . . 4 ⊢ · = (comp‘𝐶) | |
3 | eqid 2738 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
4 | epii.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | isepi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isepi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | oppcco 17245 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
8 | 1, 2, 3, 4, 5, 6 | oppcco 17245 | . . 3 ⊢ (𝜑 → (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
9 | 7, 8 | eqeq12d 2754 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹))) |
10 | 3, 1 | oppcbas 17246 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
11 | eqid 2738 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
12 | eqid 2738 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
13 | eqid 2738 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
14 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | 3 | oppccat 17250 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
17 | epii.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
18 | isepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
19 | 3, 14, 13, 18 | oppcmon 17267 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
20 | 17, 19 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
21 | epii.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
22 | isepi.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
23 | 22, 3 | oppchom 17243 | . . . 4 ⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑍) |
24 | 21, 23 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
25 | epii.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) | |
26 | 25, 23 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑌)) |
27 | 10, 11, 12, 13, 16, 5, 6, 4, 20, 24, 26 | moni 17265 | . 2 ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐺) = (𝐹(〈𝑍, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝐾) ↔ 𝐺 = 𝐾)) |
28 | 9, 27 | bitr3d 284 | 1 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2111 〈cop 4561 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 Hom chom 16837 compcco 16838 Catccat 17191 oppCatcoppc 17238 Monocmon 17257 Epicepi 17258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-tpos 7988 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-hom 16850 df-cco 16851 df-cat 17195 df-cid 17196 df-oppc 17239 df-mon 17259 df-epi 17260 |
This theorem is referenced by: setcepi 17618 |
Copyright terms: Public domain | W3C validator |