![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fctop2 | Structured version Visualization version GIF version |
Description: The finite complement topology on a set π΄. Example 3 in [Munkres] p. 77. (This version of fctop 22507 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
Ref | Expression |
---|---|
fctop2 | β’ (π΄ β π β {π₯ β π« π΄ β£ ((π΄ β π₯) βΊ Ο β¨ π₯ = β )} β (TopOnβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9647 | . . . 4 β’ ((π΄ β π₯) β Fin β (π΄ β π₯) βΊ Ο) | |
2 | 1 | orbi1i 913 | . . 3 β’ (((π΄ β π₯) β Fin β¨ π₯ = β ) β ((π΄ β π₯) βΊ Ο β¨ π₯ = β )) |
3 | 2 | rabbii 3439 | . 2 β’ {π₯ β π« π΄ β£ ((π΄ β π₯) β Fin β¨ π₯ = β )} = {π₯ β π« π΄ β£ ((π΄ β π₯) βΊ Ο β¨ π₯ = β )} |
4 | fctop 22507 | . 2 β’ (π΄ β π β {π₯ β π« π΄ β£ ((π΄ β π₯) β Fin β¨ π₯ = β )} β (TopOnβπ΄)) | |
5 | 3, 4 | eqeltrrid 2839 | 1 β’ (π΄ β π β {π₯ β π« π΄ β£ ((π΄ β π₯) βΊ Ο β¨ π₯ = β )} β (TopOnβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 846 = wceq 1542 β wcel 2107 {crab 3433 β cdif 3946 β c0 4323 π« cpw 4603 class class class wbr 5149 βcfv 6544 Οcom 7855 βΊ csdm 8938 Fincfn 8939 TopOnctopon 22412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-top 22396 df-topon 22413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |