MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop2 Structured version   Visualization version   GIF version

Theorem fctop2 22921
Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 22920 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.)
Assertion
Ref Expression
fctop2 (𝐴 ∈ 𝑉 β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ ((𝐴 βˆ– π‘₯) β‰Ί Ο‰ ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄))
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem fctop2
StepHypRef Expression
1 isfinite 9676 . . . 4 ((𝐴 βˆ– π‘₯) ∈ Fin ↔ (𝐴 βˆ– π‘₯) β‰Ί Ο‰)
21orbi1i 912 . . 3 (((𝐴 βˆ– π‘₯) ∈ Fin ∨ π‘₯ = βˆ…) ↔ ((𝐴 βˆ– π‘₯) β‰Ί Ο‰ ∨ π‘₯ = βˆ…))
32rabbii 3435 . 2 {π‘₯ ∈ 𝒫 𝐴 ∣ ((𝐴 βˆ– π‘₯) ∈ Fin ∨ π‘₯ = βˆ…)} = {π‘₯ ∈ 𝒫 𝐴 ∣ ((𝐴 βˆ– π‘₯) β‰Ί Ο‰ ∨ π‘₯ = βˆ…)}
4 fctop 22920 . 2 (𝐴 ∈ 𝑉 β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ ((𝐴 βˆ– π‘₯) ∈ Fin ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄))
53, 4eqeltrrid 2834 1 (𝐴 ∈ 𝑉 β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ ((𝐴 βˆ– π‘₯) β‰Ί Ο‰ ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ wo 846   = wceq 1534   ∈ wcel 2099  {crab 3429   βˆ– cdif 3944  βˆ…c0 4323  π’« cpw 4603   class class class wbr 5148  β€˜cfv 6548  Ο‰com 7870   β‰Ί csdm 8963  Fincfn 8964  TopOnctopon 22825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-top 22809  df-topon 22826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator