MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop2 Structured version   Visualization version   GIF version

Theorem fctop2 21302
Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 21301 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.)
Assertion
Ref Expression
fctop2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fctop2
StepHypRef Expression
1 isfinite 8966 . . . 4 ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑥) ≺ ω)
21orbi1i 908 . . 3 (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅))
32rabbii 3419 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)}
4 fctop 21301 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
53, 4syl5eqelr 2888 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 842   = wceq 1522  wcel 2081  {crab 3109  cdif 3860  c0 4215  𝒫 cpw 4457   class class class wbr 4966  cfv 6230  ωcom 7441  csdm 8361  Fincfn 8362  TopOnctopon 21207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-top 21191  df-topon 21208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator