MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop2 Structured version   Visualization version   GIF version

Theorem fctop2 21541
Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 21540 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.)
Assertion
Ref Expression
fctop2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fctop2
StepHypRef Expression
1 isfinite 9103 . . . 4 ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑥) ≺ ω)
21orbi1i 907 . . 3 (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅))
32rabbii 3471 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)}
4 fctop 21540 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
53, 4eqeltrrid 2915 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 841   = wceq 1528  wcel 2105  {crab 3139  cdif 3930  c0 4288  𝒫 cpw 4535   class class class wbr 5057  cfv 6348  ωcom 7569  csdm 8496  Fincfn 8497  TopOnctopon 21446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-top 21430  df-topon 21447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator