MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleloe Structured version   Visualization version   GIF version

Theorem xrleloe 13120
Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrleloe ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem xrleloe
StepHypRef Expression
1 xrlenlt 11276 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2 xrlttri 13115 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
32ancoms 460 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
43con2bid 355 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 = 𝐴𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴))
5 eqcom 2740 . . . . 5 (𝐵 = 𝐴𝐴 = 𝐵)
65orbi1i 913 . . . 4 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 = 𝐵𝐴 < 𝐵))
7 orcom 869 . . . 4 ((𝐴 = 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
86, 7bitri 275 . . 3 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
94, 8bitr3di 286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
101, 9bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107   class class class wbr 5148  *cxr 11244   < clt 11245  cle 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251
This theorem is referenced by:  xrleltne  13121  dfle2  13123  xrltle  13125  xrleid  13127  xrlelttr  13132  xrltletr  13133  xrletr  13134  nltpnft  13140  ngtmnft  13142  xmulge0  13260  xlemul1a  13264  xadddi2  13273  prunioo  13455  xrsxmet  24317  metds0  24358  metdseq0  24362  metnrmlem1a  24366  icombl  25073  ioombl  25074  volivth  25116  vitalilem4  25120  itg2gt0  25270  deg1sublt  25620  xrge0addgt0  32180  xrge0adddir  32181  icorempo  36221  icceuelpartlem  46090
  Copyright terms: Public domain W3C validator