| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleloe | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrleloe | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11305 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 2 | xrlttri 13160 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) |
| 4 | 3 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴)) |
| 5 | eqcom 2743 | . . . . 5 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 6 | 5 | orbi1i 913 | . . . 4 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 < 𝐵)) |
| 7 | orcom 870 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
| 9 | 4, 8 | bitr3di 286 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 10 | 1, 9 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: xrleltne 13166 dfle2 13168 xrltle 13170 xrleid 13172 xrlelttr 13177 xrltletr 13178 xrletr 13179 nltpnft 13185 ngtmnft 13187 xmulge0 13305 xlemul1a 13309 xadddi2 13318 prunioo 13503 xrsxmet 24754 metds0 24795 metdseq0 24799 metnrmlem1a 24803 icombl 25522 ioombl 25523 volivth 25565 vitalilem4 25569 itg2gt0 25718 deg1sublt 26072 xrge0addgt0 33017 xrge0adddir 33018 icorempo 37374 icceuelpartlem 47416 |
| Copyright terms: Public domain | W3C validator |