MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleloe Structured version   Visualization version   GIF version

Theorem xrleloe 13165
Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrleloe ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem xrleloe
StepHypRef Expression
1 xrlenlt 11305 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2 xrlttri 13160 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
32ancoms 458 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
43con2bid 354 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 = 𝐴𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴))
5 eqcom 2743 . . . . 5 (𝐵 = 𝐴𝐴 = 𝐵)
65orbi1i 913 . . . 4 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 = 𝐵𝐴 < 𝐵))
7 orcom 870 . . . 4 ((𝐴 = 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
86, 7bitri 275 . . 3 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
94, 8bitr3di 286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
101, 9bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5124  *cxr 11273   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by:  xrleltne  13166  dfle2  13168  xrltle  13170  xrleid  13172  xrlelttr  13177  xrltletr  13178  xrletr  13179  nltpnft  13185  ngtmnft  13187  xmulge0  13305  xlemul1a  13309  xadddi2  13318  prunioo  13503  xrsxmet  24754  metds0  24795  metdseq0  24799  metnrmlem1a  24803  icombl  25522  ioombl  25523  volivth  25565  vitalilem4  25569  itg2gt0  25718  deg1sublt  26072  xrge0addgt0  33017  xrge0adddir  33018  icorempo  37374  icceuelpartlem  47416
  Copyright terms: Public domain W3C validator