MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdpfx Structured version   Visualization version   GIF version

Theorem swrdpfx 14689
Description: A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
swrdpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))

Proof of Theorem swrdpfx
StepHypRef Expression
1 elfznn0 13626 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 615 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
32adantr 479 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 14655 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 7432 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩))
7 simpl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
8 simpr 483 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 13630 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
1110adantl 480 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 0 ∈ (0...𝑁))
127, 8, 113jca 1125 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
1312adantr 479 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
14 elfzelz 13533 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℤ)
15 zcn 12593 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 11590 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716eqcomd 2731 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
1814, 17syl 17 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1918adantl 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
2019oveq2d 7433 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
2120eleq2d 2811 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...(𝑁 − 0))))
2219oveq2d 7433 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾...𝑁) = (𝐾...(𝑁 − 0)))
2322eleq2d 2811 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (𝐾...𝑁) ↔ 𝐿 ∈ (𝐾...(𝑁 − 0))))
2421, 23anbi12d 630 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) ↔ (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0)))))
2524biimpa 475 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))))
26 swrdswrd 14687 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩)))
2713, 25, 26sylc 65 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩))
28 elfzelz 13533 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
2928zcnd 12697 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
3029adantr 479 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℂ)
3130adantl 480 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐾 ∈ ℂ)
3231addlidd 11445 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐾) = 𝐾)
33 elfzelz 13533 . . . . . . . . 9 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℤ)
3433zcnd 12697 . . . . . . . 8 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℂ)
3534adantl 480 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐿 ∈ ℂ)
3635adantl 480 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐿 ∈ ℂ)
3736addlidd 11445 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐿) = 𝐿)
3832, 37opeq12d 4882 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ⟨(0 + 𝐾), (0 + 𝐿)⟩ = ⟨𝐾, 𝐿⟩)
3938oveq2d 7433 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
406, 27, 393eqtrd 2769 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
4140ex 411 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cop 4635  cfv 6547  (class class class)co 7417  cc 11136  0cc0 11138   + caddc 11141  cmin 11474  0cn0 12502  cz 12588  ...cfz 13516  chash 14321  Word cword 14496   substr csubstr 14622   prefix cpfx 14652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-substr 14623  df-pfx 14653
This theorem is referenced by:  swrdrevpfx  34796
  Copyright terms: Public domain W3C validator