MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdpfx Structured version   Visualization version   GIF version

Theorem swrdpfx 13824
Description: A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
swrdpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))

Proof of Theorem swrdpfx
StepHypRef Expression
1 elfznn0 12756 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 610 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
32adantr 474 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 13788 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 6939 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩))
7 simpl 476 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
8 simpr 479 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 12760 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
1110adantl 475 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 0 ∈ (0...𝑁))
127, 8, 113jca 1119 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
1312adantr 474 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
14 elfzelz 12664 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℤ)
15 zcn 11738 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 10725 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716eqcomd 2784 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
1814, 17syl 17 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1918adantl 475 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
2019oveq2d 6940 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
2120eleq2d 2845 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...(𝑁 − 0))))
2219oveq2d 6940 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾...𝑁) = (𝐾...(𝑁 − 0)))
2322eleq2d 2845 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (𝐾...𝑁) ↔ 𝐿 ∈ (𝐾...(𝑁 − 0))))
2421, 23anbi12d 624 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) ↔ (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0)))))
2524biimpa 470 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))))
26 swrdswrd 13820 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩)))
2713, 25, 26sylc 65 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩))
28 elfzelz 12664 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
2928zcnd 11840 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
3029adantr 474 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℂ)
3130adantl 475 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐾 ∈ ℂ)
3231addid2d 10579 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐾) = 𝐾)
33 elfzelz 12664 . . . . . . . . 9 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℤ)
3433zcnd 11840 . . . . . . . 8 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℂ)
3534adantl 475 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐿 ∈ ℂ)
3635adantl 475 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐿 ∈ ℂ)
3736addid2d 10579 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐿) = 𝐿)
3832, 37opeq12d 4646 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ⟨(0 + 𝐾), (0 + 𝐿)⟩ = ⟨𝐾, 𝐿⟩)
3938oveq2d 6940 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
406, 27, 393eqtrd 2818 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
4140ex 403 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cop 4404  cfv 6137  (class class class)co 6924  cc 10272  0cc0 10274   + caddc 10277  cmin 10608  0cn0 11647  cz 11733  ...cfz 12648  chash 13441  Word cword 13605   substr csubstr 13736   prefix cpfx 13785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-substr 13737  df-pfx 13786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator