MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdpfx Structured version   Visualization version   GIF version

Theorem swrdpfx 14277
Description: A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
swrdpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))

Proof of Theorem swrdpfx
StepHypRef Expression
1 elfznn0 13210 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 620 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
32adantr 484 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 14243 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 7233 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩))
7 simpl 486 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
8 simpr 488 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 13214 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
1110adantl 485 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 0 ∈ (0...𝑁))
127, 8, 113jca 1130 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
1312adantr 484 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
14 elfzelz 13117 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℤ)
15 zcn 12186 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 11183 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716eqcomd 2743 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
1814, 17syl 17 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1918adantl 485 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
2019oveq2d 7234 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
2120eleq2d 2823 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...(𝑁 − 0))))
2219oveq2d 7234 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾...𝑁) = (𝐾...(𝑁 − 0)))
2322eleq2d 2823 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (𝐾...𝑁) ↔ 𝐿 ∈ (𝐾...(𝑁 − 0))))
2421, 23anbi12d 634 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) ↔ (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0)))))
2524biimpa 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))))
26 swrdswrd 14275 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩)))
2713, 25, 26sylc 65 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩))
28 elfzelz 13117 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
2928zcnd 12288 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
3029adantr 484 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℂ)
3130adantl 485 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐾 ∈ ℂ)
3231addid2d 11038 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐾) = 𝐾)
33 elfzelz 13117 . . . . . . . . 9 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℤ)
3433zcnd 12288 . . . . . . . 8 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℂ)
3534adantl 485 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐿 ∈ ℂ)
3635adantl 485 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐿 ∈ ℂ)
3736addid2d 11038 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐿) = 𝐿)
3832, 37opeq12d 4797 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ⟨(0 + 𝐾), (0 + 𝐿)⟩ = ⟨𝐾, 𝐿⟩)
3938oveq2d 7234 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
406, 27, 393eqtrd 2781 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
4140ex 416 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cop 4552  cfv 6385  (class class class)co 7218  cc 10732  0cc0 10734   + caddc 10737  cmin 11067  0cn0 12095  cz 12181  ...cfz 13100  chash 13901  Word cword 14074   substr csubstr 14210   prefix cpfx 14240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-er 8396  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-n0 12096  df-z 12182  df-uz 12444  df-fz 13101  df-fzo 13244  df-hash 13902  df-word 14075  df-substr 14211  df-pfx 14241
This theorem is referenced by:  swrdrevpfx  32796
  Copyright terms: Public domain W3C validator