| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxswrd | Structured version Visualization version GIF version | ||
| Description: A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.) |
| Ref | Expression |
|---|---|
| pfxswrd | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 𝑀)) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = (𝑊 substr 〈𝑀, (𝑀 + 𝐿)〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd 7384 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr 〈𝑀, 𝑁〉) ∈ V) | |
| 2 | elfznn0 13523 | . . . 4 ⊢ (𝐿 ∈ (0...(𝑁 − 𝑀)) → 𝐿 ∈ ℕ0) | |
| 3 | pfxval 14580 | . . . 4 ⊢ (((𝑊 substr 〈𝑀, 𝑁〉) ∈ V ∧ 𝐿 ∈ ℕ0) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈0, 𝐿〉)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈0, 𝐿〉)) |
| 5 | fznn0sub 13459 | . . . . . . 7 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
| 6 | 5 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑁 − 𝑀) ∈ ℕ0) |
| 7 | 0elfz 13527 | . . . . . 6 ⊢ ((𝑁 − 𝑀) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 𝑀))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 0 ∈ (0...(𝑁 − 𝑀))) |
| 9 | 8 | anim1i 615 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀)))) |
| 10 | swrdswrd 14611 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈0, 𝐿〉) = (𝑊 substr 〈(𝑀 + 0), (𝑀 + 𝐿)〉))) | |
| 11 | 10 | imp 406 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀)))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈0, 𝐿〉) = (𝑊 substr 〈(𝑀 + 0), (𝑀 + 𝐿)〉)) |
| 12 | 9, 11 | syldan 591 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈0, 𝐿〉) = (𝑊 substr 〈(𝑀 + 0), (𝑀 + 𝐿)〉)) |
| 13 | elfznn0 13523 | . . . . . . . 8 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
| 14 | nn0cn 12394 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
| 15 | 14 | addridd 11316 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀) |
| 16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 0) = 𝑀) |
| 17 | 16 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 0) = 𝑀) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 0) = 𝑀) |
| 19 | 18 | opeq1d 4830 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → 〈(𝑀 + 0), (𝑀 + 𝐿)〉 = 〈𝑀, (𝑀 + 𝐿)〉) |
| 20 | 19 | oveq2d 7365 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (𝑊 substr 〈(𝑀 + 0), (𝑀 + 𝐿)〉) = (𝑊 substr 〈𝑀, (𝑀 + 𝐿)〉)) |
| 21 | 4, 12, 20 | 3eqtrd 2768 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = (𝑊 substr 〈𝑀, (𝑀 + 𝐿)〉)) |
| 22 | 21 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 𝑀)) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = (𝑊 substr 〈𝑀, (𝑀 + 𝐿)〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ‘cfv 6482 (class class class)co 7349 0cc0 11009 + caddc 11012 − cmin 11347 ℕ0cn0 12384 ...cfz 13410 ♯chash 14237 Word cword 14420 substr csubstr 14547 prefix cpfx 14577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-substr 14548 df-pfx 14578 |
| This theorem is referenced by: pfxpfx 14614 |
| Copyright terms: Public domain | W3C validator |