![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxswrd | Structured version Visualization version GIF version |
Description: A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.) |
Ref | Expression |
---|---|
pfxswrd | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7439 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ V) | |
2 | elfznn0 13597 | . . . 4 ⊢ (𝐿 ∈ (0...(𝑁 − 𝑀)) → 𝐿 ∈ ℕ0) | |
3 | pfxval 14626 | . . . 4 ⊢ (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ V ∧ 𝐿 ∈ ℕ0) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩)) | |
4 | 1, 2, 3 | syl2an 595 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩)) |
5 | fznn0sub 13536 | . . . . . . 7 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
6 | 5 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑁 − 𝑀) ∈ ℕ0) |
7 | 0elfz 13601 | . . . . . 6 ⊢ ((𝑁 − 𝑀) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 𝑀))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 0 ∈ (0...(𝑁 − 𝑀))) |
9 | 8 | anim1i 614 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀)))) |
10 | swrdswrd 14658 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩))) | |
11 | 10 | imp 406 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (0 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩)) |
12 | 9, 11 | syldan 590 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩)) |
13 | elfznn0 13597 | . . . . . . . 8 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
14 | nn0cn 12483 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
15 | 14 | addridd 11415 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀) |
16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 0) = 𝑀) |
17 | 16 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 0) = 𝑀) |
18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 0) = 𝑀) |
19 | 18 | opeq1d 4874 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩ = ⟨𝑀, (𝑀 + 𝐿)⟩) |
20 | 19 | oveq2d 7420 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)) |
21 | 4, 12, 20 | 3eqtrd 2770 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁 − 𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)) |
22 | 21 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 ‘cfv 6536 (class class class)co 7404 0cc0 11109 + caddc 11112 − cmin 11445 ℕ0cn0 12473 ...cfz 13487 ♯chash 14292 Word cword 14467 substr csubstr 14593 prefix cpfx 14623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-hash 14293 df-word 14468 df-substr 14594 df-pfx 14624 |
This theorem is referenced by: pfxpfx 14661 |
Copyright terms: Public domain | W3C validator |