| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshw0 | Structured version Visualization version GIF version | ||
| Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| Ref | Expression |
|---|---|
| cshw0 | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 14692 | . . . 4 ⊢ (∅ cyclShift 0) = ∅ | |
| 2 | oveq1 7348 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0)) | |
| 3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
| 4 | 1, 2, 3 | 3eqtr3a 2789 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊) |
| 5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
| 6 | 0z 12471 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 7 | cshword 14690 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) | |
| 8 | 6, 7 | mpan2 691 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
| 10 | necom 2979 | . . . . . 6 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
| 11 | lennncl 14433 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 12 | nnrp 12894 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
| 13 | 0mod 13798 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0) | |
| 14 | 13 | opeq1d 4829 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℝ+ → 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉 = 〈0, (♯‘𝑊)〉) |
| 15 | 14 | oveq2d 7357 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
| 16 | 13 | oveq2d 7357 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0)) |
| 17 | 15, 16 | oveq12d 7359 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 18 | 11, 12, 17 | 3syl 18 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 19 | 10, 18 | sylan2b 594 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 20 | 9, 19 | eqtrd 2765 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 21 | lencl 14432 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 22 | pfxval 14573 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) | |
| 23 | 21, 22 | mpdan 687 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
| 24 | pfxid 14584 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
| 25 | 23, 24 | eqtr3d 2767 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
| 27 | pfx00 14574 | . . . . . 6 ⊢ (𝑊 prefix 0) = ∅ | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅) |
| 29 | 26, 28 | oveq12d 7359 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅)) |
| 30 | ccatrid 14487 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊) | |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊) |
| 32 | 20, 29, 31 | 3eqtrd 2769 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊) |
| 33 | 32 | expcom 413 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
| 34 | 5, 33 | pm2.61ine 3009 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∅c0 4281 〈cop 4580 ‘cfv 6477 (class class class)co 7341 0cc0 10998 ℕcn 12117 ℕ0cn0 12373 ℤcz 12460 ℝ+crp 12882 mod cmo 13765 ♯chash 14229 Word cword 14412 ++ cconcat 14469 substr csubstr 14540 prefix cpfx 14570 cyclShift ccsh 14687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-hash 14230 df-word 14413 df-concat 14470 df-substr 14541 df-pfx 14571 df-csh 14688 |
| This theorem is referenced by: cshwn 14696 2cshwcshw 14724 scshwfzeqfzo 14725 cshwrepswhash1 17006 crctcshlem4 29791 clwwisshclwws 29985 erclwwlkref 29990 erclwwlknref 30039 1cshid 32930 |
| Copyright terms: Public domain | W3C validator |