Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw0 Structured version   Visualization version   GIF version

Theorem cshw0 14167
 Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshw0 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)

Proof of Theorem cshw0
StepHypRef Expression
1 0csh0 14166 . . . 4 (∅ cyclShift 0) = ∅
2 oveq1 7152 . . . 4 (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2857 . . 3 (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
6 0z 12000 . . . . . . 7 0 ∈ ℤ
7 cshword 14164 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
86, 7mpan2 690 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
98adantr 484 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
10 necom 3040 . . . . . 6 (∅ ≠ 𝑊𝑊 ≠ ∅)
11 lennncl 13897 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnrp 12408 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
13 0mod 13285 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0)
1413opeq1d 4775 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨0, (♯‘𝑊)⟩)
1514oveq2d 7161 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
1613oveq2d 7161 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0))
1715, 16oveq12d 7163 . . . . . . 7 ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1811, 12, 173syl 18 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1910, 18sylan2b 596 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
209, 19eqtrd 2833 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
21 lencl 13896 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
22 pfxval 14046 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
2321, 22mpdan 686 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
24 pfxid 14057 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊)
2523, 24eqtr3d 2835 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
2625adantr 484 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
27 pfx00 14047 . . . . . 6 (𝑊 prefix 0) = ∅
2827a1i 11 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅)
2926, 28oveq12d 7163 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅))
30 ccatrid 13952 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊)
3130adantr 484 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊)
3220, 29, 313eqtrd 2837 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊)
3332expcom 417 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
345, 33pm2.61ine 3070 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∅c0 4246  ⟨cop 4534  ‘cfv 6332  (class class class)co 7145  0cc0 10544  ℕcn 11643  ℕ0cn0 11903  ℤcz 11989  ℝ+crp 12397   mod cmo 13252  ♯chash 13706  Word cword 13877   ++ cconcat 13933   substr csubstr 14013   prefix cpfx 14043   cyclShift ccsh 14161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-hash 13707  df-word 13878  df-concat 13934  df-substr 14014  df-pfx 14044  df-csh 14162 This theorem is referenced by:  cshwn  14170  2cshwcshw  14198  scshwfzeqfzo  14199  cshwrepswhash1  16448  crctcshlem4  27650  clwwisshclwws  27844  erclwwlkref  27849  erclwwlknref  27898  1cshid  30703
 Copyright terms: Public domain W3C validator