MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw0 Structured version   Visualization version   GIF version

Theorem cshw0 14766
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshw0 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)

Proof of Theorem cshw0
StepHypRef Expression
1 0csh0 14765 . . . 4 (∅ cyclShift 0) = ∅
2 oveq1 7397 . . . 4 (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2789 . . 3 (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
6 0z 12547 . . . . . . 7 0 ∈ ℤ
7 cshword 14763 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
86, 7mpan2 691 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
98adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
10 necom 2979 . . . . . 6 (∅ ≠ 𝑊𝑊 ≠ ∅)
11 lennncl 14506 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnrp 12970 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
13 0mod 13871 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0)
1413opeq1d 4846 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨0, (♯‘𝑊)⟩)
1514oveq2d 7406 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
1613oveq2d 7406 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0))
1715, 16oveq12d 7408 . . . . . . 7 ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1811, 12, 173syl 18 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1910, 18sylan2b 594 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
209, 19eqtrd 2765 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
21 lencl 14505 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
22 pfxval 14645 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
2321, 22mpdan 687 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
24 pfxid 14656 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊)
2523, 24eqtr3d 2767 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
2625adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
27 pfx00 14646 . . . . . 6 (𝑊 prefix 0) = ∅
2827a1i 11 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅)
2926, 28oveq12d 7408 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅))
30 ccatrid 14559 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊)
3130adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊)
3220, 29, 313eqtrd 2769 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊)
3332expcom 413 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
345, 33pm2.61ine 3009 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  0cc0 11075  cn 12193  0cn0 12449  cz 12536  +crp 12958   mod cmo 13838  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612   prefix cpfx 14642   cyclShift ccsh 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-csh 14761
This theorem is referenced by:  cshwn  14769  2cshwcshw  14798  scshwfzeqfzo  14799  cshwrepswhash1  17080  crctcshlem4  29757  clwwisshclwws  29951  erclwwlkref  29956  erclwwlknref  30005  1cshid  32888
  Copyright terms: Public domain W3C validator