| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshw0 | Structured version Visualization version GIF version | ||
| Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| Ref | Expression |
|---|---|
| cshw0 | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 14765 | . . . 4 ⊢ (∅ cyclShift 0) = ∅ | |
| 2 | oveq1 7397 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0)) | |
| 3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
| 4 | 1, 2, 3 | 3eqtr3a 2789 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊) |
| 5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
| 6 | 0z 12547 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 7 | cshword 14763 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) | |
| 8 | 6, 7 | mpan2 691 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
| 10 | necom 2979 | . . . . . 6 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
| 11 | lennncl 14506 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 12 | nnrp 12970 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
| 13 | 0mod 13871 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0) | |
| 14 | 13 | opeq1d 4846 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℝ+ → 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉 = 〈0, (♯‘𝑊)〉) |
| 15 | 14 | oveq2d 7406 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
| 16 | 13 | oveq2d 7406 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0)) |
| 17 | 15, 16 | oveq12d 7408 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 18 | 11, 12, 17 | 3syl 18 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 19 | 10, 18 | sylan2b 594 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 20 | 9, 19 | eqtrd 2765 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
| 21 | lencl 14505 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 22 | pfxval 14645 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) | |
| 23 | 21, 22 | mpdan 687 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
| 24 | pfxid 14656 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
| 25 | 23, 24 | eqtr3d 2767 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
| 27 | pfx00 14646 | . . . . . 6 ⊢ (𝑊 prefix 0) = ∅ | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅) |
| 29 | 26, 28 | oveq12d 7408 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅)) |
| 30 | ccatrid 14559 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊) | |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊) |
| 32 | 20, 29, 31 | 3eqtrd 2769 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊) |
| 33 | 32 | expcom 413 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
| 34 | 5, 33 | pm2.61ine 3009 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℝ+crp 12958 mod cmo 13838 ♯chash 14302 Word cword 14485 ++ cconcat 14542 substr csubstr 14612 prefix cpfx 14642 cyclShift ccsh 14760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-hash 14303 df-word 14486 df-concat 14543 df-substr 14613 df-pfx 14643 df-csh 14761 |
| This theorem is referenced by: cshwn 14769 2cshwcshw 14798 scshwfzeqfzo 14799 cshwrepswhash1 17080 crctcshlem4 29757 clwwisshclwws 29951 erclwwlkref 29956 erclwwlknref 30005 1cshid 32888 |
| Copyright terms: Public domain | W3C validator |