MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw0 Structured version   Visualization version   GIF version

Theorem cshw0 14740
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshw0 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)

Proof of Theorem cshw0
StepHypRef Expression
1 0csh0 14739 . . . 4 (∅ cyclShift 0) = ∅
2 oveq1 7412 . . . 4 (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2796 . . 3 (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
6 0z 12565 . . . . . . 7 0 ∈ ℤ
7 cshword 14737 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
86, 7mpan2 689 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
98adantr 481 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
10 necom 2994 . . . . . 6 (∅ ≠ 𝑊𝑊 ≠ ∅)
11 lennncl 14480 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnrp 12981 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
13 0mod 13863 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0)
1413opeq1d 4878 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨0, (♯‘𝑊)⟩)
1514oveq2d 7421 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
1613oveq2d 7421 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0))
1715, 16oveq12d 7423 . . . . . . 7 ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1811, 12, 173syl 18 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1910, 18sylan2b 594 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
209, 19eqtrd 2772 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
21 lencl 14479 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
22 pfxval 14619 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
2321, 22mpdan 685 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
24 pfxid 14630 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊)
2523, 24eqtr3d 2774 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
2625adantr 481 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
27 pfx00 14620 . . . . . 6 (𝑊 prefix 0) = ∅
2827a1i 11 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅)
2926, 28oveq12d 7423 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅))
30 ccatrid 14533 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊)
3130adantr 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊)
3220, 29, 313eqtrd 2776 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊)
3332expcom 414 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
345, 33pm2.61ine 3025 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  c0 4321  cop 4633  cfv 6540  (class class class)co 7405  0cc0 11106  cn 12208  0cn0 12468  cz 12554  +crp 12970   mod cmo 13830  chash 14286  Word cword 14460   ++ cconcat 14516   substr csubstr 14586   prefix cpfx 14616   cyclShift ccsh 14734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-hash 14287  df-word 14461  df-concat 14517  df-substr 14587  df-pfx 14617  df-csh 14735
This theorem is referenced by:  cshwn  14743  2cshwcshw  14772  scshwfzeqfzo  14773  cshwrepswhash1  17032  crctcshlem4  29063  clwwisshclwws  29257  erclwwlkref  29262  erclwwlknref  29311  1cshid  32110
  Copyright terms: Public domain W3C validator