MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw0 Structured version   Visualization version   GIF version

Theorem cshw0 14759
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshw0 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)

Proof of Theorem cshw0
StepHypRef Expression
1 0csh0 14758 . . . 4 (∅ cyclShift 0) = ∅
2 oveq1 7394 . . . 4 (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2788 . . 3 (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
6 0z 12540 . . . . . . 7 0 ∈ ℤ
7 cshword 14756 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
86, 7mpan2 691 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
98adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))))
10 necom 2978 . . . . . 6 (∅ ≠ 𝑊𝑊 ≠ ∅)
11 lennncl 14499 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnrp 12963 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
13 0mod 13864 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0)
1413opeq1d 4843 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨0, (♯‘𝑊)⟩)
1514oveq2d 7403 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
1613oveq2d 7403 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0))
1715, 16oveq12d 7405 . . . . . . 7 ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1811, 12, 173syl 18 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
1910, 18sylan2b 594 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
209, 19eqtrd 2764 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)))
21 lencl 14498 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
22 pfxval 14638 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
2321, 22mpdan 687 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
24 pfxid 14649 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊)
2523, 24eqtr3d 2766 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
2625adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
27 pfx00 14639 . . . . . 6 (𝑊 prefix 0) = ∅
2827a1i 11 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅)
2926, 28oveq12d 7405 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅))
30 ccatrid 14552 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊)
3130adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊)
3220, 29, 313eqtrd 2768 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊)
3332expcom 413 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
345, 33pm2.61ine 3008 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  cop 4595  cfv 6511  (class class class)co 7387  0cc0 11068  cn 12186  0cn0 12442  cz 12529  +crp 12951   mod cmo 13831  chash 14295  Word cword 14478   ++ cconcat 14535   substr csubstr 14605   prefix cpfx 14635   cyclShift ccsh 14753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754
This theorem is referenced by:  cshwn  14762  2cshwcshw  14791  scshwfzeqfzo  14792  cshwrepswhash1  17073  crctcshlem4  29750  clwwisshclwws  29944  erclwwlkref  29949  erclwwlknref  29998  1cshid  32881
  Copyright terms: Public domain W3C validator