![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshw0 | Structured version Visualization version GIF version |
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
Ref | Expression |
---|---|
cshw0 | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0csh0 14841 | . . . 4 ⊢ (∅ cyclShift 0) = ∅ | |
2 | oveq1 7455 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0)) | |
3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
4 | 1, 2, 3 | 3eqtr3a 2804 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊) |
5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
6 | 0z 12650 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
7 | cshword 14839 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) | |
8 | 6, 7 | mpan2 690 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊))))) |
10 | necom 3000 | . . . . . 6 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
11 | lennncl 14582 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
12 | nnrp 13068 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
13 | 0mod 13953 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0) | |
14 | 13 | opeq1d 4903 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℝ+ → 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉 = 〈0, (♯‘𝑊)〉) |
15 | 14 | oveq2d 7464 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
16 | 13 | oveq2d 7464 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → (𝑊 prefix (0 mod (♯‘𝑊))) = (𝑊 prefix 0)) |
17 | 15, 16 | oveq12d 7466 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
18 | 11, 12, 17 | 3syl 18 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
19 | 10, 18 | sylan2b 593 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈(0 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (0 mod (♯‘𝑊)))) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
20 | 9, 19 | eqtrd 2780 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0))) |
21 | lencl 14581 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
22 | pfxval 14721 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) | |
23 | 21, 22 | mpdan 686 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
24 | pfxid 14732 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
25 | 23, 24 | eqtr3d 2782 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
27 | pfx00 14722 | . . . . . 6 ⊢ (𝑊 prefix 0) = ∅ | |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 prefix 0) = ∅) |
29 | 26, 28 | oveq12d 7466 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr 〈0, (♯‘𝑊)〉) ++ (𝑊 prefix 0)) = (𝑊 ++ ∅)) |
30 | ccatrid 14635 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊) | |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊) |
32 | 20, 29, 31 | 3eqtrd 2784 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊) |
33 | 32 | expcom 413 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)) |
34 | 5, 33 | pm2.61ine 3031 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ℝ+crp 13057 mod cmo 13920 ♯chash 14379 Word cword 14562 ++ cconcat 14618 substr csubstr 14688 prefix cpfx 14718 cyclShift ccsh 14836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-hash 14380 df-word 14563 df-concat 14619 df-substr 14689 df-pfx 14719 df-csh 14837 |
This theorem is referenced by: cshwn 14845 2cshwcshw 14874 scshwfzeqfzo 14875 cshwrepswhash1 17150 crctcshlem4 29853 clwwisshclwws 30047 erclwwlkref 30052 erclwwlknref 30101 1cshid 32926 |
Copyright terms: Public domain | W3C validator |