MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxpfx Structured version   Visualization version   GIF version

Theorem pfxpfx 14421
Description: A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
pfxpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))

Proof of Theorem pfxpfx
StepHypRef Expression
1 elfznn0 13349 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
323adant3 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 14386 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 7290 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿))
7 simp1 1135 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑊 ∈ Word 𝑉)
8 simp2 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 13353 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
11103ad2ant2 1133 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 0 ∈ (0...𝑁))
127, 8, 113jca 1127 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
131nn0cnd 12295 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℂ)
1413subid1d 11321 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 − 0) = 𝑁)
1514eqcomd 2744 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1615adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
1716oveq2d 7291 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
1817eleq2d 2824 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (0...𝑁) ↔ 𝐿 ∈ (0...(𝑁 − 0))))
1918biimp3a 1468 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(𝑁 − 0)))
20 pfxswrd 14419 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 0)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩)))
2112, 19, 20sylc 65 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩))
22 elfznn0 13349 . . . . . . . 8 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
2322nn0cnd 12295 . . . . . . 7 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℂ)
2423addid2d 11176 . . . . . 6 (𝐿 ∈ (0...𝑁) → (0 + 𝐿) = 𝐿)
2524opeq2d 4811 . . . . 5 (𝐿 ∈ (0...𝑁) → ⟨0, (0 + 𝐿)⟩ = ⟨0, 𝐿⟩)
2625oveq2d 7291 . . . 4 (𝐿 ∈ (0...𝑁) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
27263ad2ant3 1134 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
2822anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
29283adant2 1130 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
30 pfxval 14386 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3129, 30syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3227, 31eqtr4d 2781 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 prefix 𝐿))
336, 21, 323eqtrd 2782 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567  cfv 6433  (class class class)co 7275  0cc0 10871   + caddc 10874  cmin 11205  0cn0 12233  ...cfz 13239  chash 14044  Word cword 14217   substr csubstr 14353   prefix cpfx 14383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354  df-pfx 14384
This theorem is referenced by:  pfxpfxid  14422  pfxlsw2ccat  31224
  Copyright terms: Public domain W3C validator