MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxpfx Structured version   Visualization version   GIF version

Theorem pfxpfx 14680
Description: A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
pfxpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))

Proof of Theorem pfxpfx
StepHypRef Expression
1 elfznn0 13588 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
323adant3 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 14645 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 7405 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿))
7 simp1 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑊 ∈ Word 𝑉)
8 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 13592 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
11103ad2ant2 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 0 ∈ (0...𝑁))
127, 8, 113jca 1128 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
131nn0cnd 12512 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℂ)
1413subid1d 11529 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 − 0) = 𝑁)
1514eqcomd 2736 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1615adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
1716oveq2d 7406 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
1817eleq2d 2815 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (0...𝑁) ↔ 𝐿 ∈ (0...(𝑁 − 0))))
1918biimp3a 1471 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(𝑁 − 0)))
20 pfxswrd 14678 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 0)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩)))
2112, 19, 20sylc 65 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩))
22 elfznn0 13588 . . . . . . . 8 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
2322nn0cnd 12512 . . . . . . 7 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℂ)
2423addlidd 11382 . . . . . 6 (𝐿 ∈ (0...𝑁) → (0 + 𝐿) = 𝐿)
2524opeq2d 4847 . . . . 5 (𝐿 ∈ (0...𝑁) → ⟨0, (0 + 𝐿)⟩ = ⟨0, 𝐿⟩)
2625oveq2d 7406 . . . 4 (𝐿 ∈ (0...𝑁) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
27263ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
2822anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
29283adant2 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
30 pfxval 14645 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3129, 30syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3227, 31eqtr4d 2768 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 prefix 𝐿))
336, 21, 323eqtrd 2769 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598  cfv 6514  (class class class)co 7390  0cc0 11075   + caddc 11078  cmin 11412  0cn0 12449  ...cfz 13475  chash 14302  Word cword 14485   substr csubstr 14612   prefix cpfx 14642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-substr 14613  df-pfx 14643
This theorem is referenced by:  pfxpfxid  14681  pfxlsw2ccat  32879
  Copyright terms: Public domain W3C validator