MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxpfx Structured version   Visualization version   GIF version

Theorem pfxpfx 14654
Description: A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
pfxpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))

Proof of Theorem pfxpfx
StepHypRef Expression
1 elfznn0 13590 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
323adant3 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 14619 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 7420 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿))
7 simp1 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑊 ∈ Word 𝑉)
8 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 13594 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
11103ad2ant2 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 0 ∈ (0...𝑁))
127, 8, 113jca 1128 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
131nn0cnd 12530 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℂ)
1413subid1d 11556 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 − 0) = 𝑁)
1514eqcomd 2738 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1615adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
1716oveq2d 7421 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
1817eleq2d 2819 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (0...𝑁) ↔ 𝐿 ∈ (0...(𝑁 − 0))))
1918biimp3a 1469 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(𝑁 − 0)))
20 pfxswrd 14652 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 0)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩)))
2112, 19, 20sylc 65 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨0, (0 + 𝐿)⟩))
22 elfznn0 13590 . . . . . . . 8 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
2322nn0cnd 12530 . . . . . . 7 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℂ)
2423addlidd 11411 . . . . . 6 (𝐿 ∈ (0...𝑁) → (0 + 𝐿) = 𝐿)
2524opeq2d 4879 . . . . 5 (𝐿 ∈ (0...𝑁) → ⟨0, (0 + 𝐿)⟩ = ⟨0, 𝐿⟩)
2625oveq2d 7421 . . . 4 (𝐿 ∈ (0...𝑁) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
27263ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 substr ⟨0, 𝐿⟩))
2822anim2i 617 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
29283adant2 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0))
30 pfxval 14619 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3129, 30syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3227, 31eqtr4d 2775 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → (𝑊 substr ⟨0, (0 + 𝐿)⟩) = (𝑊 prefix 𝐿))
336, 21, 323eqtrd 2776 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4633  cfv 6540  (class class class)co 7405  0cc0 11106   + caddc 11109  cmin 11440  0cn0 12468  ...cfz 13480  chash 14286  Word cword 14460   substr csubstr 14586   prefix cpfx 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587  df-pfx 14617
This theorem is referenced by:  pfxpfxid  14655  pfxlsw2ccat  32103
  Copyright terms: Public domain W3C validator