MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx1 Structured version   Visualization version   GIF version

Theorem pfxccatpfx1 14744
Description: A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatpfx1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))

Proof of Theorem pfxccatpfx1
StepHypRef Expression
1 3simpa 1145 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 13648 . . . . . 6 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ ℕ0)
3 0elfz 13652 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
42, 3syl 17 . . . . 5 (𝑁 ∈ (0...𝐿) → 0 ∈ (0...𝑁))
5 swrdccatin2.l . . . . . . . 8 𝐿 = (♯‘𝐴)
65oveq2i 7435 . . . . . . 7 (0...𝐿) = (0...(♯‘𝐴))
76eleq2i 2818 . . . . . 6 (𝑁 ∈ (0...𝐿) ↔ 𝑁 ∈ (0...(♯‘𝐴)))
87biimpi 215 . . . . 5 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
94, 8jca 510 . . . 4 (𝑁 ∈ (0...𝐿) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
1093ad2ant3 1132 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
11 swrdccatin1 14733 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩)))
121, 10, 11sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩))
13 ccatcl 14582 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
14133adant3 1129 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
1523ad2ant3 1132 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → 𝑁 ∈ ℕ0)
1614, 15jca 510 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0))
17 pfxval 14681 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
1816, 17syl 17 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
19 pfxval 14681 . . . 4 ((𝐴 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
202, 19sylan2 591 . . 3 ((𝐴 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
21203adant2 1128 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
2212, 18, 213eqtr4d 2776 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cop 4639  cfv 6554  (class class class)co 7424  0cc0 11158  0cn0 12524  ...cfz 13538  chash 14347  Word cword 14522   ++ cconcat 14578   substr csubstr 14648   prefix cpfx 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-substr 14649  df-pfx 14679
This theorem is referenced by:  pfxccat3a  14746  pfxccatid  14749
  Copyright terms: Public domain W3C validator