MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxfv Structured version   Visualization version   GIF version

Theorem pfxfv 13768
Description: A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
Assertion
Ref Expression
pfxfv ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))

Proof of Theorem pfxfv
StepHypRef Expression
1 elfznn0 12734 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℕ0)
2 pfxval 13759 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
31, 2sylan2 586 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
433adant3 1166 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
54fveq1d 6439 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼))
6 simp1 1170 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
7 0elfz 12738 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
81, 7syl 17 . . . 4 (𝐿 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝐿))
983ad2ant2 1168 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 0 ∈ (0...𝐿))
10 simp2 1171 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐿 ∈ (0...(♯‘𝑊)))
111nn0cnd 11687 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ)
1211subid1d 10709 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐿 − 0) = 𝐿)
1312eqcomd 2831 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 = (𝐿 − 0))
1413oveq2d 6926 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝑊)) → (0..^𝐿) = (0..^(𝐿 − 0)))
1514eleq2d 2892 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) ↔ 𝐼 ∈ (0..^(𝐿 − 0))))
1615biimpd 221 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0))))
1716a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0)))))
18173imp 1141 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐼 ∈ (0..^(𝐿 − 0)))
19 swrdfv 13717 . . 3 (((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^(𝐿 − 0))) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
206, 9, 10, 18, 19syl31anc 1496 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
21 elfzoelz 12772 . . . . . 6 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
2221zcnd 11818 . . . . 5 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℂ)
2322addid1d 10562 . . . 4 (𝐼 ∈ (0..^𝐿) → (𝐼 + 0) = 𝐼)
24233ad2ant3 1169 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝐼 + 0) = 𝐼)
2524fveq2d 6441 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊‘(𝐼 + 0)) = (𝑊𝐼))
265, 20, 253eqtrd 2865 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  cop 4405  cfv 6127  (class class class)co 6910  0cc0 10259   + caddc 10262  cmin 10592  0cn0 11625  ...cfz 12626  ..^cfzo 12767  chash 13417  Word cword 13581   substr csubstr 13707   prefix cpfx 13756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-substr 13708  df-pfx 13757
This theorem is referenced by:  pfxid  13770  pfxfv0  13778  pfxtrcfv  13779  pfxfvlsw  13781  pfxeq  13782  ccatpfx  13787  pfxccatin12lem2  13835  splfv1  13875  repswpfx  13908  cshwidxmod  13931  pfx2  14075  wwlksm1edg  27187  wwlksnred  27209  clwwlkinwwlk  27385  clwwlkf  27398  wwlksubclwwlk  27410  dlwwlknondlwlknonf1olem1  27760
  Copyright terms: Public domain W3C validator