MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxfv Structured version   Visualization version   GIF version

Theorem pfxfv 14323
Description: A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
Assertion
Ref Expression
pfxfv ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))

Proof of Theorem pfxfv
StepHypRef Expression
1 elfznn0 13278 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℕ0)
2 pfxval 14314 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
31, 2sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
433adant3 1130 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
54fveq1d 6758 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼))
6 simp1 1134 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
7 0elfz 13282 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
81, 7syl 17 . . . 4 (𝐿 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝐿))
983ad2ant2 1132 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 0 ∈ (0...𝐿))
10 simp2 1135 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐿 ∈ (0...(♯‘𝑊)))
111nn0cnd 12225 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ)
1211subid1d 11251 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐿 − 0) = 𝐿)
1312eqcomd 2744 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 = (𝐿 − 0))
1413oveq2d 7271 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝑊)) → (0..^𝐿) = (0..^(𝐿 − 0)))
1514eleq2d 2824 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) ↔ 𝐼 ∈ (0..^(𝐿 − 0))))
1615biimpd 228 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0))))
1716a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0)))))
18173imp 1109 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐼 ∈ (0..^(𝐿 − 0)))
19 swrdfv 14289 . . 3 (((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^(𝐿 − 0))) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
206, 9, 10, 18, 19syl31anc 1371 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
21 elfzoelz 13316 . . . . . 6 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
2221zcnd 12356 . . . . 5 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℂ)
2322addid1d 11105 . . . 4 (𝐼 ∈ (0..^𝐿) → (𝐼 + 0) = 𝐼)
24233ad2ant3 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝐼 + 0) = 𝐼)
2524fveq2d 6760 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊‘(𝐼 + 0)) = (𝑊𝐼))
265, 20, 253eqtrd 2782 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cop 4564  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805  cmin 11135  0cn0 12163  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   substr csubstr 14281   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282  df-pfx 14312
This theorem is referenced by:  pfxid  14325  pfxfv0  14333  pfxtrcfv  14334  pfxfvlsw  14336  pfxeq  14337  ccatpfx  14342  pfxccatin12lem2  14372  splfv1  14396  repswpfx  14426  cshwidxmod  14444  pfx2  14588  wwlksm1edg  28147  wwlksnred  28158  clwwlkinwwlk  28305  clwwlkf  28312  wwlksubclwwlk  28323  dlwwlknondlwlknonf1olem1  28629  cycpmco2  31302  revpfxsfxrev  32977
  Copyright terms: Public domain W3C validator