MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxfv Structured version   Visualization version   GIF version

Theorem pfxfv 14639
Description: A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
Assertion
Ref Expression
pfxfv ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))

Proof of Theorem pfxfv
StepHypRef Expression
1 elfznn0 13601 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℕ0)
2 pfxval 14630 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
31, 2sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
433adant3 1131 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
54fveq1d 6893 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼))
6 simp1 1135 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
7 0elfz 13605 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
81, 7syl 17 . . . 4 (𝐿 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝐿))
983ad2ant2 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 0 ∈ (0...𝐿))
10 simp2 1136 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐿 ∈ (0...(♯‘𝑊)))
111nn0cnd 12541 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ)
1211subid1d 11567 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐿 − 0) = 𝐿)
1312eqcomd 2737 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 = (𝐿 − 0))
1413oveq2d 7428 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝑊)) → (0..^𝐿) = (0..^(𝐿 − 0)))
1514eleq2d 2818 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) ↔ 𝐼 ∈ (0..^(𝐿 − 0))))
1615biimpd 228 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0))))
1716a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) → (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ (0..^(𝐿 − 0)))))
18173imp 1110 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐼 ∈ (0..^(𝐿 − 0)))
19 swrdfv 14605 . . 3 (((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^(𝐿 − 0))) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
206, 9, 10, 18, 19syl31anc 1372 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr ⟨0, 𝐿⟩)‘𝐼) = (𝑊‘(𝐼 + 0)))
21 elfzoelz 13639 . . . . . 6 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
2221zcnd 12674 . . . . 5 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℂ)
2322addridd 11421 . . . 4 (𝐼 ∈ (0..^𝐿) → (𝐼 + 0) = 𝐼)
24233ad2ant3 1134 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝐼 + 0) = 𝐼)
2524fveq2d 6895 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊‘(𝐼 + 0)) = (𝑊𝐼))
265, 20, 253eqtrd 2775 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cop 4634  cfv 6543  (class class class)co 7412  0cc0 11116   + caddc 11119  cmin 11451  0cn0 12479  ...cfz 13491  ..^cfzo 13634  chash 14297  Word cword 14471   substr csubstr 14597   prefix cpfx 14627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-substr 14598  df-pfx 14628
This theorem is referenced by:  pfxid  14641  pfxfv0  14649  pfxtrcfv  14650  pfxfvlsw  14652  pfxeq  14653  ccatpfx  14658  pfxccatin12lem2  14688  splfv1  14712  repswpfx  14742  cshwidxmod  14760  pfx2  14905  wwlksm1edg  29417  wwlksnred  29428  clwwlkinwwlk  29575  clwwlkf  29582  wwlksubclwwlk  29593  dlwwlknondlwlknonf1olem1  29899  cycpmco2  32577  revpfxsfxrev  34419
  Copyright terms: Public domain W3C validator