![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
pfxco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13576 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0) | |
2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ ℕ0) |
3 | 0elfz 13580 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 0 ∈ (0...𝑁)) |
5 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ (0...(♯‘𝑊))) | |
6 | 4, 5 | jca 512 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
7 | swrdco 14770 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
8 | 6, 7 | syld3an2 1411 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
9 | pfxval 14605 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) | |
10 | 1, 9 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) |
11 | 10 | coeq2d 5854 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
12 | 11 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
13 | ffun 6707 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
14 | 13 | anim2i 617 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝑊 ∈ Word 𝐴 ∧ Fun 𝐹)) |
15 | 14 | ancomd 462 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
16 | 15 | 3adant2 1131 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
17 | cofunexg 7917 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ V) |
19 | 18, 2 | jca 512 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0)) |
20 | pfxval 14605 | . . 3 ⊢ (((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
22 | 8, 12, 21 | 3eqtr4d 2781 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3473 〈cop 4628 ∘ ccom 5673 Fun wfun 6526 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 0cc0 11092 ℕ0cn0 12454 ...cfz 13466 ♯chash 14272 Word cword 14446 substr csubstr 14572 prefix cpfx 14602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-hash 14273 df-word 14447 df-substr 14573 df-pfx 14603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |