| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxco | Structured version Visualization version GIF version | ||
| Description: Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| pfxco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 13637 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0) | |
| 2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ ℕ0) |
| 3 | 0elfz 13641 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 0 ∈ (0...𝑁)) |
| 5 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ (0...(♯‘𝑊))) | |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
| 7 | swrdco 14856 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
| 8 | 6, 7 | syld3an2 1413 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
| 9 | pfxval 14691 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) | |
| 10 | 1, 9 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) |
| 11 | 10 | coeq2d 5842 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
| 12 | 11 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
| 13 | ffun 6709 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 14 | 13 | anim2i 617 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝑊 ∈ Word 𝐴 ∧ Fun 𝐹)) |
| 15 | 14 | ancomd 461 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 16 | 15 | 3adant2 1131 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 17 | cofunexg 7947 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ V) |
| 19 | 18, 2 | jca 511 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 20 | pfxval 14691 | . . 3 ⊢ (((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
| 22 | 8, 12, 21 | 3eqtr4d 2780 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ∘ ccom 5658 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕ0cn0 12501 ...cfz 13524 ♯chash 14348 Word cword 14531 substr csubstr 14658 prefix cpfx 14688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-substr 14659 df-pfx 14689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |