![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
pfxco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13656 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0) | |
2 | 1 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ ℕ0) |
3 | 0elfz 13660 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 0 ∈ (0...𝑁)) |
5 | simp2 1136 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → 𝑁 ∈ (0...(♯‘𝑊))) | |
6 | 4, 5 | jca 511 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
7 | swrdco 14872 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
8 | 6, 7 | syld3an2 1410 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
9 | pfxval 14707 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) | |
10 | 1, 9 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑁) = (𝑊 substr 〈0, 𝑁〉)) |
11 | 10 | coeq2d 5875 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
12 | 11 | 3adant3 1131 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = (𝐹 ∘ (𝑊 substr 〈0, 𝑁〉))) |
13 | ffun 6739 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
14 | 13 | anim2i 617 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝑊 ∈ Word 𝐴 ∧ Fun 𝐹)) |
15 | 14 | ancomd 461 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
16 | 15 | 3adant2 1130 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
17 | cofunexg 7971 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ V) |
19 | 18, 2 | jca 511 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0)) |
20 | pfxval 14707 | . . 3 ⊢ (((𝐹 ∘ 𝑊) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊) prefix 𝑁) = ((𝐹 ∘ 𝑊) substr 〈0, 𝑁〉)) |
22 | 8, 12, 21 | 3eqtr4d 2784 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 Vcvv 3477 〈cop 4636 ∘ ccom 5692 Fun wfun 6556 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 0cc0 11152 ℕ0cn0 12523 ...cfz 13543 ♯chash 14365 Word cword 14548 substr csubstr 14674 prefix cpfx 14704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-word 14549 df-substr 14675 df-pfx 14705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |