Proof of Theorem atlelt
Step | Hyp | Ref
| Expression |
1 | | simp3r 1199 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑄 < 𝑋) |
2 | | breq1 5038 |
. . 3
⊢ (𝑃 = 𝑄 → (𝑃 < 𝑋 ↔ 𝑄 < 𝑋)) |
3 | 1, 2 | syl5ibrcom 250 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃 = 𝑄 → 𝑃 < 𝑋)) |
4 | | simp1 1133 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝐾 ∈ HL) |
5 | | simp21 1203 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 ∈ 𝐴) |
6 | | simp22 1204 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑄 ∈ 𝐴) |
7 | | atlelt.s |
. . . . 5
⊢ < =
(lt‘𝐾) |
8 | | eqid 2758 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
9 | | atlelt.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
10 | 7, 8, 9 | atlt 37039 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃(join‘𝐾)𝑄) ↔ 𝑃 ≠ 𝑄)) |
11 | 4, 5, 6, 10 | syl3anc 1368 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑄) ↔ 𝑃 ≠ 𝑄)) |
12 | | simp3l 1198 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 ≤ 𝑋) |
13 | | simp23 1205 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑋 ∈ 𝐵) |
14 | 4, 6, 13 | 3jca 1125 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
15 | | atlelt.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
16 | 15, 7 | pltle 17642 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑄 < 𝑋 → 𝑄 ≤ 𝑋)) |
17 | 14, 1, 16 | sylc 65 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑄 ≤ 𝑋) |
18 | | hllat 36965 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
19 | 18 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝐾 ∈ Lat) |
20 | | atlelt.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
21 | 20, 9 | atbase 36891 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
22 | 5, 21 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 ∈ 𝐵) |
23 | 20, 9 | atbase 36891 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
24 | 6, 23 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑄 ∈ 𝐵) |
25 | 20, 15, 8 | latjle12 17743 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑃(join‘𝐾)𝑄) ≤ 𝑋)) |
26 | 19, 22, 24, 13, 25 | syl13anc 1369 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑃(join‘𝐾)𝑄) ≤ 𝑋)) |
27 | 12, 17, 26 | mpbi2and 711 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃(join‘𝐾)𝑄) ≤ 𝑋) |
28 | | hlpos 36968 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
29 | 28 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝐾 ∈ Poset) |
30 | 20, 8 | latjcl 17732 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃(join‘𝐾)𝑄) ∈ 𝐵) |
31 | 19, 22, 24, 30 | syl3anc 1368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃(join‘𝐾)𝑄) ∈ 𝐵) |
32 | 20, 15, 7 | pltletr 17652 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ 𝐵 ∧ (𝑃(join‘𝐾)𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 < (𝑃(join‘𝐾)𝑄) ∧ (𝑃(join‘𝐾)𝑄) ≤ 𝑋) → 𝑃 < 𝑋)) |
33 | 29, 22, 31, 13, 32 | syl13anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → ((𝑃 < (𝑃(join‘𝐾)𝑄) ∧ (𝑃(join‘𝐾)𝑄) ≤ 𝑋) → 𝑃 < 𝑋)) |
34 | 27, 33 | mpan2d 693 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑄) → 𝑃 < 𝑋)) |
35 | 11, 34 | sylbird 263 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → (𝑃 ≠ 𝑄 → 𝑃 < 𝑋)) |
36 | 3, 35 | pm2.61dne 3037 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 < 𝑋) |