Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlelt Structured version   Visualization version   GIF version

Theorem atlelt 38765
Description: Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
atlelt.b 𝐵 = (Base‘𝐾)
atlelt.l = (le‘𝐾)
atlelt.s < = (lt‘𝐾)
atlelt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlelt ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃 < 𝑋)

Proof of Theorem atlelt
StepHypRef Expression
1 simp3r 1199 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑄 < 𝑋)
2 breq1 5141 . . 3 (𝑃 = 𝑄 → (𝑃 < 𝑋𝑄 < 𝑋))
31, 2syl5ibrcom 246 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃 = 𝑄𝑃 < 𝑋))
4 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝐾 ∈ HL)
5 simp21 1203 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃𝐴)
6 simp22 1204 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑄𝐴)
7 atlelt.s . . . . 5 < = (lt‘𝐾)
8 eqid 2724 . . . . 5 (join‘𝐾) = (join‘𝐾)
9 atlelt.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9atlt 38764 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < (𝑃(join‘𝐾)𝑄) ↔ 𝑃𝑄))
114, 5, 6, 10syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑄) ↔ 𝑃𝑄))
12 simp3l 1198 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃 𝑋)
13 simp23 1205 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑋𝐵)
144, 6, 133jca 1125 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝐾 ∈ HL ∧ 𝑄𝐴𝑋𝐵))
15 atlelt.l . . . . . . 7 = (le‘𝐾)
1615, 7pltle 18285 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑋𝐵) → (𝑄 < 𝑋𝑄 𝑋))
1714, 1, 16sylc 65 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑄 𝑋)
18 hllat 38689 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
19183ad2ant1 1130 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝐾 ∈ Lat)
20 atlelt.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2120, 9atbase 38615 . . . . . . 7 (𝑃𝐴𝑃𝐵)
225, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃𝐵)
2320, 9atbase 38615 . . . . . . 7 (𝑄𝐴𝑄𝐵)
246, 23syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑄𝐵)
2520, 15, 8latjle12 18402 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) ↔ (𝑃(join‘𝐾)𝑄) 𝑋))
2619, 22, 24, 13, 25syl13anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → ((𝑃 𝑋𝑄 𝑋) ↔ (𝑃(join‘𝐾)𝑄) 𝑋))
2712, 17, 26mpbi2and 709 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃(join‘𝐾)𝑄) 𝑋)
28 hlpos 38692 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
29283ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝐾 ∈ Poset)
3020, 8latjcl 18391 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃(join‘𝐾)𝑄) ∈ 𝐵)
3119, 22, 24, 30syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃(join‘𝐾)𝑄) ∈ 𝐵)
3220, 15, 7pltletr 18295 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑃𝐵 ∧ (𝑃(join‘𝐾)𝑄) ∈ 𝐵𝑋𝐵)) → ((𝑃 < (𝑃(join‘𝐾)𝑄) ∧ (𝑃(join‘𝐾)𝑄) 𝑋) → 𝑃 < 𝑋))
3329, 22, 31, 13, 32syl13anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → ((𝑃 < (𝑃(join‘𝐾)𝑄) ∧ (𝑃(join‘𝐾)𝑄) 𝑋) → 𝑃 < 𝑋))
3427, 33mpan2d 691 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑄) → 𝑃 < 𝑋))
3511, 34sylbird 260 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → (𝑃𝑄𝑃 < 𝑋))
363, 35pm2.61dne 3020 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  Posetcpo 18259  ltcplt 18260  joincjn 18263  Latclat 18383  Atomscatm 38589  HLchlt 38676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677
This theorem is referenced by:  1cvratlt  38801
  Copyright terms: Public domain W3C validator