Proof of Theorem 2atm2atN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hlop 39364 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 2 | 1 | adantr 480 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ OP) | 
| 3 |  | simpr3 1196 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | 
| 4 |  | 2atm2at.z | . . . . 5
⊢  0 =
(0.‘𝐾) | 
| 5 |  | eqid 2736 | . . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) | 
| 6 |  | 2atm2at.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 | 4, 5, 6 | 0ltat 39293 | . . . 4
⊢ ((𝐾 ∈ OP ∧ 𝑅 ∈ 𝐴) → 0 (lt‘𝐾)𝑅) | 
| 8 | 2, 3, 7 | syl2anc 584 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 0 (lt‘𝐾)𝑅) | 
| 9 |  | simpl 482 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 10 |  | simpr1 1194 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 11 |  | eqid 2736 | . . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 12 |  | 2atm2at.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 13 | 11, 12, 6 | hlatlej1 39377 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑅(le‘𝐾)(𝑅 ∨ 𝑃)) | 
| 14 | 9, 3, 10, 13 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅(le‘𝐾)(𝑅 ∨ 𝑃)) | 
| 15 |  | simpr2 1195 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 16 | 11, 12, 6 | hlatlej1 39377 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑅(le‘𝐾)(𝑅 ∨ 𝑄)) | 
| 17 | 9, 3, 15, 16 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅(le‘𝐾)(𝑅 ∨ 𝑄)) | 
| 18 |  | hllat 39365 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 19 | 18 | adantr 480 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 20 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 21 | 20, 6 | atbase 39291 | . . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) | 
| 22 | 3, 21 | syl 17 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) | 
| 23 | 20, 12, 6 | hlatjcl 39369 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 24 | 9, 3, 10, 23 | syl3anc 1372 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 25 | 20, 12, 6 | hlatjcl 39369 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑅 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 26 | 9, 3, 15, 25 | syl3anc 1372 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑅 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 27 |  | 2atm2at.m | . . . . . 6
⊢  ∧ =
(meet‘𝐾) | 
| 28 | 20, 11, 27 | latlem12 18512 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑅(le‘𝐾)(𝑅 ∨ 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 ∨ 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)))) | 
| 29 | 19, 22, 24, 26, 28 | syl13anc 1373 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅(le‘𝐾)(𝑅 ∨ 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 ∨ 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)))) | 
| 30 | 14, 17, 29 | mpbi2and 712 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅(le‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) | 
| 31 |  | hlpos 39368 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | 
| 32 | 31 | adantr 480 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Poset) | 
| 33 | 20, 4 | op0cl 39186 | . . . . 5
⊢ (𝐾 ∈ OP → 0 ∈
(Base‘𝐾)) | 
| 34 | 2, 33 | syl 17 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 0 ∈ (Base‘𝐾)) | 
| 35 | 20, 27 | latmcl 18486 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ∈ (Base‘𝐾)) | 
| 36 | 19, 24, 26, 35 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ∈ (Base‘𝐾)) | 
| 37 | 20, 11, 5 | pltletr 18389 | . . . 4
⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈
(Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ∈ (Base‘𝐾))) → (( 0 (lt‘𝐾)𝑅 ∧ 𝑅(le‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) → 0 (lt‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)))) | 
| 38 | 32, 34, 22, 36, 37 | syl13anc 1373 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (( 0 (lt‘𝐾)𝑅 ∧ 𝑅(le‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) → 0 (lt‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)))) | 
| 39 | 8, 30, 38 | mp2and 699 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 0 (lt‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) | 
| 40 | 20, 5, 4 | opltn0 39192 | . . 3
⊢ ((𝐾 ∈ OP ∧ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ∈ (Base‘𝐾)) → ( 0 (lt‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ≠ 0 )) | 
| 41 | 2, 36, 40 | syl2anc 584 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ( 0 (lt‘𝐾)((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ≠ 0 )) | 
| 42 | 39, 41 | mpbid 232 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ≠ 0 ) |