Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm2atN Structured version   Visualization version   GIF version

Theorem 2atm2atN 39772
Description: Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2atm2at.j = (join‘𝐾)
2atm2at.m = (meet‘𝐾)
2atm2at.z 0 = (0.‘𝐾)
2atm2at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm2atN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )

Proof of Theorem 2atm2atN
StepHypRef Expression
1 hlop 39348 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ OP)
3 simpr3 1197 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
4 2atm2at.z . . . . 5 0 = (0.‘𝐾)
5 eqid 2729 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
6 2atm2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 60ltat 39277 . . . 4 ((𝐾 ∈ OP ∧ 𝑅𝐴) → 0 (lt‘𝐾)𝑅)
82, 3, 7syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)𝑅)
9 simpl 482 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
10 simpr1 1195 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
11 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 2atm2at.j . . . . . 6 = (join‘𝐾)
1311, 12, 6hlatlej1 39361 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅(le‘𝐾)(𝑅 𝑃))
149, 3, 10, 13syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑃))
15 simpr2 1196 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
1611, 12, 6hlatlej1 39361 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → 𝑅(le‘𝐾)(𝑅 𝑄))
179, 3, 15, 16syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑄))
18 hllat 39349 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1918adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
20 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2120, 6atbase 39275 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
223, 21syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2320, 12, 6hlatjcl 39353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
249, 3, 10, 23syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
2520, 12, 6hlatjcl 39353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅 𝑄) ∈ (Base‘𝐾))
269, 3, 15, 25syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑄) ∈ (Base‘𝐾))
27 2atm2at.m . . . . . 6 = (meet‘𝐾)
2820, 11, 27latlem12 18407 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾))) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
2919, 22, 24, 26, 28syl13anc 1374 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3014, 17, 29mpbi2and 712 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
31 hlpos 39352 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3231adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Poset)
3320, 4op0cl 39170 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
342, 33syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 ∈ (Base‘𝐾))
3520, 27latmcl 18381 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3619, 24, 26, 35syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3720, 11, 5pltletr 18282 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3832, 34, 22, 36, 37syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
398, 30, 38mp2and 699 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
4020, 5, 4opltn0 39176 . . 3 ((𝐾 ∈ OP ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
412, 36, 40syl2anc 584 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
4239, 41mpbid 232 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Posetcpo 18248  ltcplt 18249  joincjn 18252  meetcmee 18253  0.cp0 18362  Latclat 18372  OPcops 39158  Atomscatm 39249  HLchlt 39336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator