Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm2atN Structured version   Visualization version   GIF version

Theorem 2atm2atN 36957
 Description: Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2atm2at.j = (join‘𝐾)
2atm2at.m = (meet‘𝐾)
2atm2at.z 0 = (0.‘𝐾)
2atm2at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm2atN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )

Proof of Theorem 2atm2atN
StepHypRef Expression
1 hlop 36534 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 483 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ OP)
3 simpr3 1192 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
4 2atm2at.z . . . . 5 0 = (0.‘𝐾)
5 eqid 2820 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
6 2atm2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 60ltat 36463 . . . 4 ((𝐾 ∈ OP ∧ 𝑅𝐴) → 0 (lt‘𝐾)𝑅)
82, 3, 7syl2anc 586 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)𝑅)
9 simpl 485 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
10 simpr1 1190 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
11 eqid 2820 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 2atm2at.j . . . . . 6 = (join‘𝐾)
1311, 12, 6hlatlej1 36547 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅(le‘𝐾)(𝑅 𝑃))
149, 3, 10, 13syl3anc 1367 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑃))
15 simpr2 1191 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
1611, 12, 6hlatlej1 36547 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → 𝑅(le‘𝐾)(𝑅 𝑄))
179, 3, 15, 16syl3anc 1367 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑄))
18 hllat 36535 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1918adantr 483 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
20 eqid 2820 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2120, 6atbase 36461 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
223, 21syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2320, 12, 6hlatjcl 36539 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
249, 3, 10, 23syl3anc 1367 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
2520, 12, 6hlatjcl 36539 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅 𝑄) ∈ (Base‘𝐾))
269, 3, 15, 25syl3anc 1367 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑄) ∈ (Base‘𝐾))
27 2atm2at.m . . . . . 6 = (meet‘𝐾)
2820, 11, 27latlem12 17667 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾))) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
2919, 22, 24, 26, 28syl13anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3014, 17, 29mpbi2and 710 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
31 hlpos 36538 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3231adantr 483 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Poset)
3320, 4op0cl 36356 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
342, 33syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 ∈ (Base‘𝐾))
3520, 27latmcl 17641 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3619, 24, 26, 35syl3anc 1367 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3720, 11, 5pltletr 17560 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3832, 34, 22, 36, 37syl13anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
398, 30, 38mp2and 697 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
4020, 5, 4opltn0 36362 . . 3 ((𝐾 ∈ OP ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
412, 36, 40syl2anc 586 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
4239, 41mpbid 234 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006   class class class wbr 5042  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  lecple 16551  Posetcpo 17529  ltcplt 17530  joincjn 17533  meetcmee 17534  0.cp0 17626  Latclat 17634  OPcops 36344  Atomscatm 36435  HLchlt 36522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-lat 17635  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator