Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm2atN Structured version   Visualization version   GIF version

Theorem 2atm2atN 37799
Description: Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2atm2at.j = (join‘𝐾)
2atm2at.m = (meet‘𝐾)
2atm2at.z 0 = (0.‘𝐾)
2atm2at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm2atN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )

Proof of Theorem 2atm2atN
StepHypRef Expression
1 hlop 37376 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 481 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ OP)
3 simpr3 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
4 2atm2at.z . . . . 5 0 = (0.‘𝐾)
5 eqid 2738 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
6 2atm2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 60ltat 37305 . . . 4 ((𝐾 ∈ OP ∧ 𝑅𝐴) → 0 (lt‘𝐾)𝑅)
82, 3, 7syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)𝑅)
9 simpl 483 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
10 simpr1 1193 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
11 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 2atm2at.j . . . . . 6 = (join‘𝐾)
1311, 12, 6hlatlej1 37389 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅(le‘𝐾)(𝑅 𝑃))
149, 3, 10, 13syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑃))
15 simpr2 1194 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
1611, 12, 6hlatlej1 37389 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → 𝑅(le‘𝐾)(𝑅 𝑄))
179, 3, 15, 16syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)(𝑅 𝑄))
18 hllat 37377 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1918adantr 481 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
20 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2120, 6atbase 37303 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
223, 21syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2320, 12, 6hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
249, 3, 10, 23syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
2520, 12, 6hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅 𝑄) ∈ (Base‘𝐾))
269, 3, 15, 25syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑄) ∈ (Base‘𝐾))
27 2atm2at.m . . . . . 6 = (meet‘𝐾)
2820, 11, 27latlem12 18184 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾))) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
2919, 22, 24, 26, 28syl13anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅(le‘𝐾)(𝑅 𝑃) ∧ 𝑅(le‘𝐾)(𝑅 𝑄)) ↔ 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3014, 17, 29mpbi2and 709 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
31 hlpos 37380 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3231adantr 481 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Poset)
3320, 4op0cl 37198 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
342, 33syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 ∈ (Base‘𝐾))
3520, 27latmcl 18158 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑅 𝑄) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3619, 24, 26, 35syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))
3720, 11, 5pltletr 18061 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾))) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
3832, 34, 22, 36, 37syl13anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (( 0 (lt‘𝐾)𝑅𝑅(le‘𝐾)((𝑅 𝑃) (𝑅 𝑄))) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄))))
398, 30, 38mp2and 696 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)))
4020, 5, 4opltn0 37204 . . 3 ((𝐾 ∈ OP ∧ ((𝑅 𝑃) (𝑅 𝑄)) ∈ (Base‘𝐾)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
412, 36, 40syl2anc 584 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ( 0 (lt‘𝐾)((𝑅 𝑃) (𝑅 𝑄)) ↔ ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 ))
4239, 41mpbid 231 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑃) (𝑅 𝑄)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026  joincjn 18029  meetcmee 18030  0.cp0 18141  Latclat 18149  OPcops 37186  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator