Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Visualization version   GIF version

Theorem dia2dimlem2 41067
Description: Lemma for dia2dim 41079. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l = (le‘𝐾)
dia2dimlem2.j = (join‘𝐾)
dia2dimlem2.m = (meet‘𝐾)
dia2dimlem2.a 𝐴 = (Atoms‘𝐾)
dia2dimlem2.h 𝐻 = (LHyp‘𝐾)
dia2dimlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem2.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem2.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem2.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem2.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem2.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem2.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem2.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem2.g (𝜑𝐺𝑇)
dia2dimlem2.gv (𝜑 → (𝐺𝑃) = 𝑄)
Assertion
Ref Expression
dia2dimlem2 (𝜑 → (𝑅𝐺) = 𝑈)

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . . . 8 (𝜑𝐾 ∈ HL)
32hllatd 39365 . . . . . . 7 (𝜑𝐾 ∈ Lat)
4 dia2dimlem2.p . . . . . . . . 9 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 494 . . . . . . . 8 (𝜑𝑃𝐴)
6 eqid 2737 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 dia2dimlem2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
86, 7atbase 39290 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
10 dia2dimlem2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 𝑊))
1110simpld 494 . . . . . . . 8 (𝜑𝑈𝐴)
126, 7atbase 39290 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
14 dia2dimlem2.l . . . . . . . 8 = (le‘𝐾)
15 dia2dimlem2.j . . . . . . . 8 = (join‘𝐾)
166, 14, 15latlej2 18494 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 (𝑃 𝑈))
173, 9, 13, 16syl3anc 1373 . . . . . 6 (𝜑𝑈 (𝑃 𝑈))
186, 15, 7hlatjcl 39368 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
192, 5, 11, 18syl3anc 1373 . . . . . . 7 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
20 dia2dimlem2.m . . . . . . . 8 = (meet‘𝐾)
216, 14, 20latleeqm2 18513 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
223, 13, 19, 21syl3anc 1373 . . . . . 6 (𝜑 → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
2317, 22mpbid 232 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) = 𝑈)
24 dia2dimlem2.rf . . . . . . . 8 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
25 dia2dimlem2.f . . . . . . . . . 10 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
26 dia2dimlem2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
27 dia2dimlem2.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
28 dia2dimlem2.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
2914, 7, 26, 27, 28trlat 40171 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
301, 4, 25, 29syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ 𝐴)
31 dia2dimlem2.v . . . . . . . . . 10 (𝜑 → (𝑉𝐴𝑉 𝑊))
3231simpld 494 . . . . . . . . 9 (𝜑𝑉𝐴)
33 dia2dimlem2.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
3414, 15, 7hlatexch2 39398 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑈𝐴𝑉𝐴) ∧ (𝑅𝐹) ≠ 𝑉) → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
352, 30, 11, 32, 33, 34syl131anc 1385 . . . . . . . 8 (𝜑 → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
3624, 35mpd 15 . . . . . . 7 (𝜑𝑈 ((𝑅𝐹) 𝑉))
3725simpld 494 . . . . . . . . . 10 (𝜑𝐹𝑇)
3814, 15, 20, 7, 26, 27, 28trlval2 40165 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
391, 37, 4, 38syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4039oveq1d 7446 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑉))
4114, 7, 26, 27ltrnel 40141 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
421, 37, 4, 41syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
4342simpld 494 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ 𝐴)
446, 15, 7hlatjcl 39368 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
452, 5, 43, 44syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
461simprd 495 . . . . . . . . . . 11 (𝜑𝑊𝐻)
476, 26lhpbase 40000 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
4931simprd 495 . . . . . . . . . 10 (𝜑𝑉 𝑊)
506, 14, 15, 20, 7atmod4i1 39868 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
512, 32, 45, 48, 49, 50syl131anc 1385 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
5215, 7hlatjass 39371 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴)) → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
532, 5, 43, 32, 52syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
5453oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑉) 𝑊) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5551, 54eqtrd 2777 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5640, 55eqtrd 2777 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5736, 56breqtrd 5169 . . . . . 6 (𝜑𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
586, 15, 7hlatjcl 39368 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
592, 43, 32, 58syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
606, 15latjcl 18484 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
613, 9, 59, 60syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
626, 20latmcl 18485 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
633, 61, 48, 62syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
646, 14, 20latmlem2 18515 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
653, 13, 63, 19, 64syl13anc 1374 . . . . . 6 (𝜑 → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
6657, 65mpd 15 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
6723, 66eqbrtrrd 5167 . . . 4 (𝜑𝑈 ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
68 dia2dimlem2.g . . . . . . 7 (𝜑𝐺𝑇)
6914, 15, 20, 7, 26, 27, 28trlval2 40165 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
701, 68, 4, 69syl3anc 1373 . . . . . 6 (𝜑 → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
71 dia2dimlem2.gv . . . . . . . . . 10 (𝜑 → (𝐺𝑃) = 𝑄)
72 dia2dimlem2.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
7371, 72eqtrdi 2793 . . . . . . . . 9 (𝜑 → (𝐺𝑃) = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
7473oveq2d 7447 . . . . . . . 8 (𝜑 → (𝑃 (𝐺𝑃)) = (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))))
7574oveq1d 7446 . . . . . . 7 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊))
7614, 15, 7hlatlej1 39376 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
772, 5, 11, 76syl3anc 1373 . . . . . . . . . 10 (𝜑𝑃 (𝑃 𝑈))
786, 14, 15, 20, 7atmod3i1 39866 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑈)) → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
792, 5, 19, 59, 77, 78syl131anc 1385 . . . . . . . . 9 (𝜑 → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
8079oveq1d 7446 . . . . . . . 8 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊))
81 hlol 39362 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
822, 81syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OL)
836, 20latmassOLD 39230 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8482, 19, 61, 48, 83syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8580, 84eqtrd 2777 . . . . . . 7 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8675, 85eqtrd 2777 . . . . . 6 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8770, 86eqtrd 2777 . . . . 5 (𝜑 → (𝑅𝐺) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8887eqcomd 2743 . . . 4 (𝜑 → ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)) = (𝑅𝐺))
8967, 88breqtrd 5169 . . 3 (𝜑𝑈 (𝑅𝐺))
90 hlatl 39361 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
912, 90syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
92 hlop 39363 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
932, 92syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
94 eqid 2737 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
95 eqid 2737 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9694, 95, 70ltat 39292 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑈𝐴) → (0.‘𝐾)(lt‘𝐾)𝑈)
9793, 11, 96syl2anc 584 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑈)
98 hlpos 39367 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
992, 98syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
1006, 94op0cl 39185 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10193, 100syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
1026, 26, 27, 28trlcl 40166 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
1031, 68, 102syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅𝐺) ∈ (Base‘𝐾))
1046, 14, 95pltletr 18388 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10599, 101, 13, 103, 104syl13anc 1374 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10697, 89, 105mp2and 699 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺))
1076, 95, 94opltn0 39191 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
10893, 103, 107syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
109106, 108mpbid 232 . . . . . 6 (𝜑 → (𝑅𝐺) ≠ (0.‘𝐾))
110109neneqd 2945 . . . . 5 (𝜑 → ¬ (𝑅𝐺) = (0.‘𝐾))
11194, 7, 26, 27, 28trlator0 40173 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
1121, 68, 111syl2anc 584 . . . . . . 7 (𝜑 → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
113112orcomd 872 . . . . . 6 (𝜑 → ((𝑅𝐺) = (0.‘𝐾) ∨ (𝑅𝐺) ∈ 𝐴))
114113ord 865 . . . . 5 (𝜑 → (¬ (𝑅𝐺) = (0.‘𝐾) → (𝑅𝐺) ∈ 𝐴))
115110, 114mpd 15 . . . 4 (𝜑 → (𝑅𝐺) ∈ 𝐴)
11614, 7atcmp 39312 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11791, 11, 115, 116syl3anc 1373 . . 3 (𝜑 → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11889, 117mpbid 232 . 2 (𝜑𝑈 = (𝑅𝐺))
119118eqcomd 2743 1 (𝜑 → (𝑅𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  Posetcpo 18353  ltcplt 18354  joincjn 18357  meetcmee 18358  0.cp0 18468  Latclat 18476  OPcops 39173  OLcol 39175  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  dia2dimlem5  41070
  Copyright terms: Public domain W3C validator