Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Visualization version   GIF version

Theorem dia2dimlem2 40252
Description: Lemma for dia2dim 40264. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l = (le‘𝐾)
dia2dimlem2.j = (join‘𝐾)
dia2dimlem2.m = (meet‘𝐾)
dia2dimlem2.a 𝐴 = (Atoms‘𝐾)
dia2dimlem2.h 𝐻 = (LHyp‘𝐾)
dia2dimlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem2.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem2.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem2.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem2.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem2.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem2.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem2.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem2.g (𝜑𝐺𝑇)
dia2dimlem2.gv (𝜑 → (𝐺𝑃) = 𝑄)
Assertion
Ref Expression
dia2dimlem2 (𝜑 → (𝑅𝐺) = 𝑈)

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . . . 8 (𝜑𝐾 ∈ HL)
32hllatd 38550 . . . . . . 7 (𝜑𝐾 ∈ Lat)
4 dia2dimlem2.p . . . . . . . . 9 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 494 . . . . . . . 8 (𝜑𝑃𝐴)
6 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 dia2dimlem2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
86, 7atbase 38475 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
10 dia2dimlem2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 𝑊))
1110simpld 494 . . . . . . . 8 (𝜑𝑈𝐴)
126, 7atbase 38475 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
14 dia2dimlem2.l . . . . . . . 8 = (le‘𝐾)
15 dia2dimlem2.j . . . . . . . 8 = (join‘𝐾)
166, 14, 15latlej2 18409 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 (𝑃 𝑈))
173, 9, 13, 16syl3anc 1370 . . . . . 6 (𝜑𝑈 (𝑃 𝑈))
186, 15, 7hlatjcl 38553 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
192, 5, 11, 18syl3anc 1370 . . . . . . 7 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
20 dia2dimlem2.m . . . . . . . 8 = (meet‘𝐾)
216, 14, 20latleeqm2 18428 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
223, 13, 19, 21syl3anc 1370 . . . . . 6 (𝜑 → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
2317, 22mpbid 231 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) = 𝑈)
24 dia2dimlem2.rf . . . . . . . 8 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
25 dia2dimlem2.f . . . . . . . . . 10 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
26 dia2dimlem2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
27 dia2dimlem2.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
28 dia2dimlem2.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
2914, 7, 26, 27, 28trlat 39356 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
301, 4, 25, 29syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ 𝐴)
31 dia2dimlem2.v . . . . . . . . . 10 (𝜑 → (𝑉𝐴𝑉 𝑊))
3231simpld 494 . . . . . . . . 9 (𝜑𝑉𝐴)
33 dia2dimlem2.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
3414, 15, 7hlatexch2 38583 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑈𝐴𝑉𝐴) ∧ (𝑅𝐹) ≠ 𝑉) → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
352, 30, 11, 32, 33, 34syl131anc 1382 . . . . . . . 8 (𝜑 → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
3624, 35mpd 15 . . . . . . 7 (𝜑𝑈 ((𝑅𝐹) 𝑉))
3725simpld 494 . . . . . . . . . 10 (𝜑𝐹𝑇)
3814, 15, 20, 7, 26, 27, 28trlval2 39350 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
391, 37, 4, 38syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4039oveq1d 7427 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑉))
4114, 7, 26, 27ltrnel 39326 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
421, 37, 4, 41syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
4342simpld 494 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ 𝐴)
446, 15, 7hlatjcl 38553 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
452, 5, 43, 44syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
461simprd 495 . . . . . . . . . . 11 (𝜑𝑊𝐻)
476, 26lhpbase 39185 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
4931simprd 495 . . . . . . . . . 10 (𝜑𝑉 𝑊)
506, 14, 15, 20, 7atmod4i1 39053 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
512, 32, 45, 48, 49, 50syl131anc 1382 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
5215, 7hlatjass 38556 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴)) → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
532, 5, 43, 32, 52syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
5453oveq1d 7427 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑉) 𝑊) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5551, 54eqtrd 2771 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5640, 55eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5736, 56breqtrd 5174 . . . . . 6 (𝜑𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
586, 15, 7hlatjcl 38553 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
592, 43, 32, 58syl3anc 1370 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
606, 15latjcl 18399 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
613, 9, 59, 60syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
626, 20latmcl 18400 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
633, 61, 48, 62syl3anc 1370 . . . . . . 7 (𝜑 → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
646, 14, 20latmlem2 18430 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
653, 13, 63, 19, 64syl13anc 1371 . . . . . 6 (𝜑 → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
6657, 65mpd 15 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
6723, 66eqbrtrrd 5172 . . . 4 (𝜑𝑈 ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
68 dia2dimlem2.g . . . . . . 7 (𝜑𝐺𝑇)
6914, 15, 20, 7, 26, 27, 28trlval2 39350 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
701, 68, 4, 69syl3anc 1370 . . . . . 6 (𝜑 → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
71 dia2dimlem2.gv . . . . . . . . . 10 (𝜑 → (𝐺𝑃) = 𝑄)
72 dia2dimlem2.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
7371, 72eqtrdi 2787 . . . . . . . . 9 (𝜑 → (𝐺𝑃) = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
7473oveq2d 7428 . . . . . . . 8 (𝜑 → (𝑃 (𝐺𝑃)) = (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))))
7574oveq1d 7427 . . . . . . 7 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊))
7614, 15, 7hlatlej1 38561 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
772, 5, 11, 76syl3anc 1370 . . . . . . . . . 10 (𝜑𝑃 (𝑃 𝑈))
786, 14, 15, 20, 7atmod3i1 39051 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑈)) → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
792, 5, 19, 59, 77, 78syl131anc 1382 . . . . . . . . 9 (𝜑 → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
8079oveq1d 7427 . . . . . . . 8 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊))
81 hlol 38547 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
822, 81syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OL)
836, 20latmassOLD 38415 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8482, 19, 61, 48, 83syl13anc 1371 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8580, 84eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8675, 85eqtrd 2771 . . . . . 6 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8770, 86eqtrd 2771 . . . . 5 (𝜑 → (𝑅𝐺) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8887eqcomd 2737 . . . 4 (𝜑 → ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)) = (𝑅𝐺))
8967, 88breqtrd 5174 . . 3 (𝜑𝑈 (𝑅𝐺))
90 hlatl 38546 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
912, 90syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
92 hlop 38548 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
932, 92syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
94 eqid 2731 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
95 eqid 2731 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9694, 95, 70ltat 38477 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑈𝐴) → (0.‘𝐾)(lt‘𝐾)𝑈)
9793, 11, 96syl2anc 583 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑈)
98 hlpos 38552 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
992, 98syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
1006, 94op0cl 38370 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10193, 100syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
1026, 26, 27, 28trlcl 39351 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
1031, 68, 102syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑅𝐺) ∈ (Base‘𝐾))
1046, 14, 95pltletr 18303 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10599, 101, 13, 103, 104syl13anc 1371 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10697, 89, 105mp2and 696 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺))
1076, 95, 94opltn0 38376 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
10893, 103, 107syl2anc 583 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
109106, 108mpbid 231 . . . . . 6 (𝜑 → (𝑅𝐺) ≠ (0.‘𝐾))
110109neneqd 2944 . . . . 5 (𝜑 → ¬ (𝑅𝐺) = (0.‘𝐾))
11194, 7, 26, 27, 28trlator0 39358 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
1121, 68, 111syl2anc 583 . . . . . . 7 (𝜑 → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
113112orcomd 868 . . . . . 6 (𝜑 → ((𝑅𝐺) = (0.‘𝐾) ∨ (𝑅𝐺) ∈ 𝐴))
114113ord 861 . . . . 5 (𝜑 → (¬ (𝑅𝐺) = (0.‘𝐾) → (𝑅𝐺) ∈ 𝐴))
115110, 114mpd 15 . . . 4 (𝜑 → (𝑅𝐺) ∈ 𝐴)
11614, 7atcmp 38497 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11791, 11, 115, 116syl3anc 1370 . . 3 (𝜑 → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11889, 117mpbid 231 . 2 (𝜑𝑈 = (𝑅𝐺))
119118eqcomd 2737 1 (𝜑 → (𝑅𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939   class class class wbr 5148  cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  Posetcpo 18267  ltcplt 18268  joincjn 18271  meetcmee 18272  0.cp0 18383  Latclat 18391  OPcops 38358  OLcol 38360  Atomscatm 38449  AtLatcal 38450  HLchlt 38536  LHypclh 39171  LTrncltrn 39288  trLctrl 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-proset 18255  df-poset 18273  df-plt 18290  df-lub 18306  df-glb 18307  df-join 18308  df-meet 18309  df-p0 18385  df-p1 18386  df-lat 18392  df-clat 18459  df-oposet 38362  df-ol 38364  df-oml 38365  df-covers 38452  df-ats 38453  df-atl 38484  df-cvlat 38508  df-hlat 38537  df-psubsp 38690  df-pmap 38691  df-padd 38983  df-lhyp 39175  df-laut 39176  df-ldil 39291  df-ltrn 39292  df-trl 39346
This theorem is referenced by:  dia2dimlem5  40255
  Copyright terms: Public domain W3C validator