Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Visualization version   GIF version

Theorem dia2dimlem2 41084
Description: Lemma for dia2dim 41096. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l = (le‘𝐾)
dia2dimlem2.j = (join‘𝐾)
dia2dimlem2.m = (meet‘𝐾)
dia2dimlem2.a 𝐴 = (Atoms‘𝐾)
dia2dimlem2.h 𝐻 = (LHyp‘𝐾)
dia2dimlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem2.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem2.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem2.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem2.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem2.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem2.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem2.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem2.g (𝜑𝐺𝑇)
dia2dimlem2.gv (𝜑 → (𝐺𝑃) = 𝑄)
Assertion
Ref Expression
dia2dimlem2 (𝜑 → (𝑅𝐺) = 𝑈)

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . . . 8 (𝜑𝐾 ∈ HL)
32hllatd 39382 . . . . . . 7 (𝜑𝐾 ∈ Lat)
4 dia2dimlem2.p . . . . . . . . 9 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 494 . . . . . . . 8 (𝜑𝑃𝐴)
6 eqid 2735 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 dia2dimlem2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
86, 7atbase 39307 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
10 dia2dimlem2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 𝑊))
1110simpld 494 . . . . . . . 8 (𝜑𝑈𝐴)
126, 7atbase 39307 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
14 dia2dimlem2.l . . . . . . . 8 = (le‘𝐾)
15 dia2dimlem2.j . . . . . . . 8 = (join‘𝐾)
166, 14, 15latlej2 18459 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 (𝑃 𝑈))
173, 9, 13, 16syl3anc 1373 . . . . . 6 (𝜑𝑈 (𝑃 𝑈))
186, 15, 7hlatjcl 39385 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
192, 5, 11, 18syl3anc 1373 . . . . . . 7 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
20 dia2dimlem2.m . . . . . . . 8 = (meet‘𝐾)
216, 14, 20latleeqm2 18478 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
223, 13, 19, 21syl3anc 1373 . . . . . 6 (𝜑 → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
2317, 22mpbid 232 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) = 𝑈)
24 dia2dimlem2.rf . . . . . . . 8 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
25 dia2dimlem2.f . . . . . . . . . 10 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
26 dia2dimlem2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
27 dia2dimlem2.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
28 dia2dimlem2.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
2914, 7, 26, 27, 28trlat 40188 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
301, 4, 25, 29syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ 𝐴)
31 dia2dimlem2.v . . . . . . . . . 10 (𝜑 → (𝑉𝐴𝑉 𝑊))
3231simpld 494 . . . . . . . . 9 (𝜑𝑉𝐴)
33 dia2dimlem2.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
3414, 15, 7hlatexch2 39415 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑈𝐴𝑉𝐴) ∧ (𝑅𝐹) ≠ 𝑉) → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
352, 30, 11, 32, 33, 34syl131anc 1385 . . . . . . . 8 (𝜑 → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
3624, 35mpd 15 . . . . . . 7 (𝜑𝑈 ((𝑅𝐹) 𝑉))
3725simpld 494 . . . . . . . . . 10 (𝜑𝐹𝑇)
3814, 15, 20, 7, 26, 27, 28trlval2 40182 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
391, 37, 4, 38syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4039oveq1d 7420 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑉))
4114, 7, 26, 27ltrnel 40158 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
421, 37, 4, 41syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
4342simpld 494 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ 𝐴)
446, 15, 7hlatjcl 39385 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
452, 5, 43, 44syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
461simprd 495 . . . . . . . . . . 11 (𝜑𝑊𝐻)
476, 26lhpbase 40017 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
4931simprd 495 . . . . . . . . . 10 (𝜑𝑉 𝑊)
506, 14, 15, 20, 7atmod4i1 39885 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
512, 32, 45, 48, 49, 50syl131anc 1385 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
5215, 7hlatjass 39388 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴)) → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
532, 5, 43, 32, 52syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
5453oveq1d 7420 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑉) 𝑊) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5551, 54eqtrd 2770 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5640, 55eqtrd 2770 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5736, 56breqtrd 5145 . . . . . 6 (𝜑𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
586, 15, 7hlatjcl 39385 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
592, 43, 32, 58syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
606, 15latjcl 18449 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
613, 9, 59, 60syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
626, 20latmcl 18450 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
633, 61, 48, 62syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
646, 14, 20latmlem2 18480 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
653, 13, 63, 19, 64syl13anc 1374 . . . . . 6 (𝜑 → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
6657, 65mpd 15 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
6723, 66eqbrtrrd 5143 . . . 4 (𝜑𝑈 ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
68 dia2dimlem2.g . . . . . . 7 (𝜑𝐺𝑇)
6914, 15, 20, 7, 26, 27, 28trlval2 40182 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
701, 68, 4, 69syl3anc 1373 . . . . . 6 (𝜑 → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
71 dia2dimlem2.gv . . . . . . . . . 10 (𝜑 → (𝐺𝑃) = 𝑄)
72 dia2dimlem2.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
7371, 72eqtrdi 2786 . . . . . . . . 9 (𝜑 → (𝐺𝑃) = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
7473oveq2d 7421 . . . . . . . 8 (𝜑 → (𝑃 (𝐺𝑃)) = (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))))
7574oveq1d 7420 . . . . . . 7 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊))
7614, 15, 7hlatlej1 39393 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
772, 5, 11, 76syl3anc 1373 . . . . . . . . . 10 (𝜑𝑃 (𝑃 𝑈))
786, 14, 15, 20, 7atmod3i1 39883 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑈)) → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
792, 5, 19, 59, 77, 78syl131anc 1385 . . . . . . . . 9 (𝜑 → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
8079oveq1d 7420 . . . . . . . 8 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊))
81 hlol 39379 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
822, 81syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OL)
836, 20latmassOLD 39247 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8482, 19, 61, 48, 83syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8580, 84eqtrd 2770 . . . . . . 7 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8675, 85eqtrd 2770 . . . . . 6 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8770, 86eqtrd 2770 . . . . 5 (𝜑 → (𝑅𝐺) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8887eqcomd 2741 . . . 4 (𝜑 → ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)) = (𝑅𝐺))
8967, 88breqtrd 5145 . . 3 (𝜑𝑈 (𝑅𝐺))
90 hlatl 39378 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
912, 90syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
92 hlop 39380 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
932, 92syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
94 eqid 2735 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
95 eqid 2735 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9694, 95, 70ltat 39309 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑈𝐴) → (0.‘𝐾)(lt‘𝐾)𝑈)
9793, 11, 96syl2anc 584 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑈)
98 hlpos 39384 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
992, 98syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
1006, 94op0cl 39202 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10193, 100syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
1026, 26, 27, 28trlcl 40183 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
1031, 68, 102syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅𝐺) ∈ (Base‘𝐾))
1046, 14, 95pltletr 18353 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10599, 101, 13, 103, 104syl13anc 1374 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10697, 89, 105mp2and 699 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺))
1076, 95, 94opltn0 39208 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
10893, 103, 107syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
109106, 108mpbid 232 . . . . . 6 (𝜑 → (𝑅𝐺) ≠ (0.‘𝐾))
110109neneqd 2937 . . . . 5 (𝜑 → ¬ (𝑅𝐺) = (0.‘𝐾))
11194, 7, 26, 27, 28trlator0 40190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
1121, 68, 111syl2anc 584 . . . . . . 7 (𝜑 → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
113112orcomd 871 . . . . . 6 (𝜑 → ((𝑅𝐺) = (0.‘𝐾) ∨ (𝑅𝐺) ∈ 𝐴))
114113ord 864 . . . . 5 (𝜑 → (¬ (𝑅𝐺) = (0.‘𝐾) → (𝑅𝐺) ∈ 𝐴))
115110, 114mpd 15 . . . 4 (𝜑 → (𝑅𝐺) ∈ 𝐴)
11614, 7atcmp 39329 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11791, 11, 115, 116syl3anc 1373 . . 3 (𝜑 → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11889, 117mpbid 232 . 2 (𝜑𝑈 = (𝑅𝐺))
119118eqcomd 2741 1 (𝜑 → (𝑅𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  Posetcpo 18319  ltcplt 18320  joincjn 18323  meetcmee 18324  0.cp0 18433  Latclat 18441  OPcops 39190  OLcol 39192  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  dia2dimlem5  41087
  Copyright terms: Public domain W3C validator